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• Directly use classifier F1 trained from view 1 to recognize 

unknown actions of view 2 

 Performance decrease drastically 

 Motion appearance looks very differently across views 

Cross-view Action Recognition 

Computer Vision Laboratory 
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Shared Actions Encourage each video in a pair to have the same sparse codes  
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• Two settings for learning a transferable dictionary Pair 
 Unsupervised setting ---videos of shared actions are unlabeled 

 Supervised setting --- videos of shared actions are labeled 

 

Our Framework 
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• Goal: Encourage two videos in a pair to have the same 
sparse representations when encoded their corresponding 
view-dictionary 
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Let                                 be a set of n-dim input signals, dictionary               

              and sparse codes                                      is learned by                              

 

 

• OMP: Sparse Coding 
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Review of Dictionary Learning 
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• The objective function of the unsupervised setting:  
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Reconstruction error 

Unsupervised Transferable Dictionary Pair Learning 
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• Goal: Find discriminative representations that are the same 
for different views of the same action 
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Reconstruction error Discriminative sparse code error [1] 

Where A is a linear transformation matrix and Q are “ideal” discriminative sparse 
codes for the pairs of videos 

Supervised dictionary pair learning 
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• The objective function of the supervised setting:  
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[1] Zhuolin Jiang, Zhe Lin, Larry S. Davis. " Learning a Discriminative Dictionary for Sparse Coding via Label Consistent K-SVD". 
IEEE Conference on Computer Vision and Pattern Recognition, 2011 
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Extension: multi-view action recognition 
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• Assuming p source views and one target view, the objective 
function is given by 
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• Exemplar frames from IXMAS multi-view dataset 

• Local feature: STIP feature + Bag of Words (dimension is 1000) 

• Global feature: Shape-flow descriptors + Bag of Words (dimension is 500) 

• Evaluation strategy: leave-one-action-class-out strategy for choosing the 
test action 

• Classifier: nearest neighbor classifier + L2 norm 

Camera0 Camera1 Camera4 Camera3 Camera2 

Check- 
Watch 

Sit- 
down 

Walk 
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Experiment:  IXMAS multi-view dataset 
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Camera0  Camera1  Camera2  Camera3  Camera4  

Cam0 26.4    96.7    98.8 24.6    97.9    99.1 20.3    97.6    99.4 27.9    84.9    92.7 

Cam1 31.2    97.3    98.8 23.0    96.4    99.7 23.0    89.7    92.7 20.3    81.2    90.6 

Cam2 23.3    92.1    99.4 20.9    89.7    96.4 13.0    94.7    97.3 17.9    89.1    95.5 

Cam3 9.7      97.0    98.2 24.9    94.2    97.6 23.0    96.7    99.7 16.7    83.9    90.9 

Cam4 51.2    83.0    85.8 38.2    70.6    81.5 41.2    89.7    93.3   53.3    83.7    83.9 

Avg. 28.9    92.4    95.5 27.6    87.8    93.6 28.0    95.1    98.0 27.4    91.2    93.3 20.7    84.8    92.4 

Experiment Results 

Computer Vision Laboratory 

Table 1. The accuracy numbers in the bracket are the average recognition 
accuracies of k-NN without transfer (in black), our unsupervised and 
supervised approaches (in red). 

•  k-NN without transfer : Independent dictionary pair learning + k-NN 
•  k-NN with transfer:  Transferable dictionary pair learning + k-NN 
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Camera0  Camera1  Camera2  Camera3  Camera4  

Cam0 72  77.6  79.9  96.7 61  69.4  76.8  97.9 62  70.3  76.8  97.6  30  44.8  74.8  84.9 

Cam1 69  77.3  81.2  97.3 64  73.9  75.8  96.4 68  67.3  78.0  89.7 41  43.9  70.4  81.2 

Cam2 62  66.1  79.6  92.1 67  70.6  76.6  89.7 67  63.6  79.8  94.9 43  53.6  72.8  89.1 

Cam3 63  69.4  73.0  97.0 72  70.0  74.1  94.2 51  51.8  74.0  96.7 44  44.2  66.9  83.9 

Cam4 51  39.1  82.0  83.0 55  38.8  68.3  70.6 61  51.8  74.0  89.7   53  34.2  71.1  83.7 

Avg. 61  63.0  79.0  92.4 67  43.3  74.7  87.8 61  64.5  75.2  95.1 63  58.9  76.4  91.2 40  46.6  71.2  84.8 

Experiment Results 

Computer Vision Laboratory 

Table 1. The accuracy numbers in the bracket are the average recognition 
accuracies of three state-of-art approaches(in black) and our unsupervised 
approaches (in green). 

•  Cross-view action recognition of unsupervised dictionary 

pair learning 
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Camera0 Camera1 Camera2 Camera3 Camera4 

Camera0 79     98.8 79     99.1 68     99.4 76     92.7 

Camera1 72     98.8 74     99.7 70     92.7 66     90.6 

Camera2 71     99.4  82     96.4 76     97.3 72     95.5 

Camera3 75     98.2 75     97.6 73     99.7 76     90.0 

Camera4 80     85.5 73     81.5 73     93.3 79     83.9 

Avg. 74     95.5 77     93.6 76     98.0 73     93.3 72     92.4 

•  Cross-view action recognition of supervised dictionary 

pair learning 

Experiment Results 

Computer Vision Laboratory 

Table 2. The accuracy numbers in the bracket are the average recognition 
accuracies of one state-of-the-art approach (Farhadi et al. ICCV 2009 in 
black) and our supervised approaches (in green). 
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•  Multi-view action recognition 

Camera0 Camera1 Camera2 Camera3 Camera4 Avg. 

Our unsupervised 98.5 99.1 99.1 100 90.3 97.4 

Our supervised 99.4 98.8 99.4 99.7 93.6 98.2 

LWE 86.6 81.1 80.1 83.6 82.8 82.8 

Junejo et. al. 74.8 74.5 74.8 70.6 61.2 71.2 

Liu et. al. 76.7 73.3 72.0 73.0 N/A 73.8 

Weinland et. Al. 86.7 89.9 86.4 87.6 66.4 83.4 

Experiment Results 

Computer Vision Laboratory 

Table 3. Multi-view action recognition results. Each column corresponds to 
one target view.  
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•  Multi-view action recognition 

Note: It is harder to transfer action models from across views that involves 
the top view. 

Experiment Results 

Computer Vision Laboratory 

Figure 1. The multi-view recognition results on each action category. 

Unsupervised approach 

supervised approach 
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Conclusions 

Computer Vision Laboratory 

•   Directly exploits the video-level correspondence  

•   Bridge the gap of sparse representations of pairs of videos 

taken from different views of the same action.  

•   Can be applied to multi-view action recognition 

•  Achieves state-of-the-art performance 
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Thank You! 

Computer Vision Laboratory 
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