Submodular Dictionary Learning for Sparse Coding

1. Overview

Goal

 Present a supervised algorithm for efficiently learning a compact and discriminative dictionary for sparse representation.

Approach

- -A dataset is mapped into an undirected k-nearest neighbor graph G=(V, E). The discriminative dictionary learning is modeled as a graph topology selection problem.
- -A monotonic and submodular objective function for dictionary learning consists of two terms: the entropy rate of a random walk on a graph and a discriminative term.
- -The objective function is optimized by a highly efficient greedy algorithm by using the submodularity and monotonic increasing properties of the objective function and the matroid constraint.
- This simple greedy algorithm gives a near-optimal solution with a (1/2)-approximation bound [5].

2. Related Work

- Sparse Coding has been successfully applied to a variety of problems in computer vision such as face recognition [1]. The SRC algorithm [1] employs the entire set of training samples to form a dictionary.
- K-SVD [2]: Efficiently learn an over-complete dictionary with a small size. It focuses on representational power, but it does not consider discrimination.
- Discriminative dictionary learning approaches:
 - ☐ Constructing a separate dictionary for each class.
- ☐ Adding discriminative terms into the objective function of dictionary learning [3].
- The diminishing return property of a submodular function has been employed in applications such as sensor placement, clustering and superpixel segmentation [4].

3. Preliminaries

Submodularity

Let E be a finite set. A set function $F: 2^E \to R$ is submodular if

$$F(A \cup \{a_1\}) - F(A) \ge F(A \cup \{a_1, a_2\}) - F(A \cup \{a_2\})$$

for all $A \subset E$ and $a_1, a_2 \in E \setminus A$. (diminishing returns property)

Matroid

Let E be a finite set and \mathcal{T} a collection of subsets of E. A matroid is an ordered pair $\mathcal{M} = (E, \mathcal{T})$ satisfying three conditions:

(a) $\emptyset \in \mathcal{I}$; (b) if $A \subseteq B$ and $B \in \mathcal{I}$, then $A \in \mathcal{I}$; (c) if $A \in \mathcal{I}$, $B \in \mathcal{I}$ and |A| < |B|, then there is an element $x \in B - A$ such that $A \cup x \in \mathcal{I}$.

4. Submodular Dictionary Learning

Monotonic and Submodular Objective Function

 \square Consists of an entropy rate term $\mathcal{H}(A)$ and a discriminative term $\mathcal{Q}(A)$:

$$\max \mathcal{F}(A) = \mathcal{H}(A) + \lambda \mathcal{Q}(A) \ s.t. \ A \subseteq E \ and \ N_A \ge K,$$

A: selected subset of edge set E; N_a: number of connected components induced by A

Zhuolin Jiang Guangxiao Zhang Larry S. Davis

University of Maryland at College Park, MD, 20742

4. Submodular Dictionary Learning

Entropy Rate of a Random Walk

Discriminative Term

$$\mathcal{Q}(A) = \frac{1}{C} \sum_{i=1}^{N_A} \max_y N_y^i - N_A \quad N_y^i : \text{Number of elements from class } y \text{ in cluster } i$$

•Optimization

 \square The cycle free constraint and connected component constraint, $N_A \geq K$, induces a matroid $\mathcal{M} = (E,\mathcal{I})$. Dictionary learning is achieved via maximizing a submodular function subject to a matroid constraint: $\max_A \mathcal{F}(A)$ s.t. $A \in \mathcal{I}$

(a) Disc. Fun. = -2.00 (b) Disc. Fun. = -1.33 (c) Disc. Fun. = -1.00

Algorithm 1 Submodular Dictionary Learning (SDL)

Input: $G = (V, E), w, K, \lambda$ and \mathcal{N} Output: D Initialization: $A \leftarrow \emptyset, D \leftarrow \emptyset$ for $N_A > K$ do $\bar{e} = \underset{A \cup \{e\} \in \mathcal{I}}{\operatorname{argmax}} \mathcal{F}(A \cup \{e\}) - \mathcal{F}(A)$ $A \cup \{e\} \in \mathcal{I}$ end for for each subgraph S_i in G = (V, A) do $D \leftarrow D \cup \{\frac{1}{|S_i|} \sum_{j:v_j \in S_i} v_j\}$ end for

Classification

☐ Face and Object recognition

For a test image y_i , first compute its sparse representation:

$$z_i = \arg\min_i \|y_i - Dz_i\|_2^2 \ s.t. \ \|z_i\|_0 \le s$$

Then the label of y_i is the index i corresponding to the largest element of a class label vector $l=Wz_i$

□ Action Classification

First compute a sparse representations for each frame, then employ dynamic time warping to align two sequences in the sparse representation domain; next a K-NN classifier is used for recognition.

5. Experiments

Caltech101

Experimental Setup

☐ Random face-based features
- dims: 504 (Extended Yale)

☐ Spatial pyramid features

- 1024 bases - dims: 3000 (Caltech101)
- ☐ Joint Shape and Motion features
 dims: 512 (Keck Gesture)

☐ Classification accuracy comparison

Extended Yale

SDL 37.5 36.7 36.6 36.9 37 K-SVD[1] 57K.3 790.1 1055 1337 166 D-KSVD (35) 560.1 801.3 1061 1355 16

☐ Computation time (s) for dictionary training

□ Classification accuracy comparison

Keck Gesture Dataset

☐ Classification accuracy comparison

• Examples of sparse codes SRC[I] SR

6. Key References

- J. Wright, A. Yang, A. Ganesh, S. Sastry and Y. Ma. Robust face recognition via sparse representation, TPAMI 2009.
- 2. M. Aharon, M. Elad and A. Bruchstein. K-SVD: An algorithm for designing over-complete dictionaries for sparse representation. Sig. Proc., 2006.
- 3. Q. Zhang and B. Li. Discriminative k-svd for dictionary learning in face recognition, CVPR 2010.
- M. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa. Entropy rate superpixel segmentation, CVPR 2011.
- G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations for maximizing submodular set functions. Mathematical Programming, 1978