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1. Overview

2. Related Work

• Goal
– Present a supervised algorithm for efficiently learning a compact and discriminative 

dictionary for sparse representation.
• Approach

–A dataset is mapped into an undirected k-nearest neighbor graph G=(V, E). The 
discriminative dictionary learning is modeled as a graph topology selection problem.

–A monotonic and submodular objective function for dictionary learning consists of two 
terms: the entropy rate of a random walk on a graph and a discriminative term.

–The objective function is optimized by a highly efficient greedy algorithm by using the 
submodularity and monotonic increasing properties of the objective function and the 
matroid constraint.

– This simple greedy algorithm gives a near-optimal solution with a (1/2)-approximation 
bound [5].

4. Submodular Dictionary Learning

6. Key References

5. Experiments

• Sparse Coding has been successfully applied to a variety of problems in computer 
vision such as face recognition [1]. The SRC algorithm [1] employs the entire set of 
training samples to form a dictionary.

• K-SVD [2]: Efficiently learn an over-complete dictionary with a small size. It focuses on 
representational power, but it does not consider discrimination.

• Discriminative dictionary learning approaches: 
Constructing a separate dictionary for each class.
Adding discriminative terms into the objective function of dictionary learning [3]. 

• The diminishing return property of a submodular function has been employed in 
applications such as sensor placement, clustering and superpixel segmentation [4].

• Extended Yale
 Classification accuracy comparison

• Caltech101
 Classification accuracy comparison

• Examples of sparse codes  

• Experimental Setup
 Random face-based features 

- dims: 504 (Extended Yale)
 Spatial pyramid features

- 1024 bases
- dims: 3000 (Caltech101)

 Joint Shape and Motion features
- dims: 512 (Keck Gesture)

3. Preliminaries
• Submodularity

Let E be a finite set. A set function                   is submodular if

for all            and                      . 
• Matroid

Let E be a finite set and      a collection of subsets of E. A matroid is an ordered pair 
satisfying three conditions: 
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Class 41 in Caltech101 
(55 test images).

Y axis indicates a sum of 
absolute sparse codes.
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•Entropy Rate of a Random Walk

•Discriminative Term

•Optimization


 

The cycle free constraint and connected component constraint,  , induces a 
matroid . Dictionary learning is achieved via maximizing a submodular 
function subject to a matroid constraint:

4. Submodular Dictionary Learning
• Monotonic and Submodular Objective Function
 Consists of an entropy rate term           and a discriminative term            :

A: selected subset of edge set E; NA : number of connected components induced by A

•Classification
 Face and Object recognition
For a test image yi , first compute its sparse 
representation:

Then the label of yi is the index i corresponding to 
the largest element of a class label vector              .

 Action Classification
First compute a sparse representations 
for each frame, then employ dynamic 
time warping to align two sequences in 
the sparse representation domain; next 
a K-NN classifier is used for recognition.

 Computation time (s) for dictionary training

• Keck Gesture Dataset
 Classification accuracy comparison

 Computation time (s) for dictionary training
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