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• Introduction/motivation 

• Dictionary Learning 

• Discriminative Dictionary Learning with 

Pairwise Constraints 

• Experiments 

– Face verification 

– Face recognition 

• Summary 

2 



Applications 

• Pair-matching type problems, only binary class 
information 
– Face Verification (same/different)  

– Pair-matching (same/different,  similar/dissimilar)  

– Image Retrieval (relevant/irrelevant)  

 

• Classification problems,  category labels provided 
– Face Recognition 

– Image Classification 

– … 
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Motivations 

• Pair matching problems are common in many 

practical applications;  we can use provided pairwise 

constraints explicitly  

• DDL-PC1: the learned dictionary encourages 

feature points from the same class (or a similar 

pair) to have similar sparse codes,  discriminative+ 

• DDL-PC2: furthermore add in a classification error 

term in classifier construction for a unified 

objective function,  discriminative++ 
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Dictionary Learning 

• find optimized dictionaries A* that provides a 

succinct representation for most statistically 

representative input signals 

• Solving l1-minimization 

Reconstruction Term Regularization Term 

: training signals;                 : sparse codes for   )...( 1 Nyy )...( 1 Nxx )...( 1 Nyy
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DDL-PC1 

   • The objective function of Dictionary Learning 
 
 
 
 
 
 
 

              :  training signals;                    :    sparse codes for   

M:  Adjacency (weight) matrix;  

                                : degree matrix,  where  

L=D-M : Laplacian matrix 
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Optimization 

• The objective function is not convex for A and X 

simultaneously, but fortunately, it is convex in A (while 

holding X fixed) and convex in X (while holding A fixed) . 

• When A is fixed, we optimize each     alternately and fix 

the other              for other signals. Optimizing the 

objective function is equivalent to 
 

    

        

       Here we modify feature sign search algorithm* to solve this convex 

problem.  
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*H. Lee, A. Batte, R. Raina and A. Y. Ng, Efficient Sparse Coding Algorithm. NIPS2006 
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Optimization (cont.) 

• Given all the sparse codes X, Optimizing the 

objective function is equivalent to 

 

 

   This is L2 constrained least square problem. We 

can optimize it using Newton’s method or 

conjugate gradient. 
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DDL-PC2 

• The objective function of Dictionary Learning 
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Matching approach 

• Face Verification (given same/not same) 

• y1, y2 are the same person, y3, y4 are the same 

person, y5 y6 are different person 
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Matching approach 

• Face Recognition 

–  class labels are given for each image in the training 

set. The pair relationships are derived from the 

category labels 

– Matrix M encoding the (dis)similarity information 

can be defined as 
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Experiments: Face Verification 

 LFW (Labeled Faces in the Wild) dataset 

 Remarkable variations caused by 

 Pose, facial appearance, age, lighting, expression,  

• occlusion, scale, camera, misalignment, hairstyle, 

etc. 

 13233 images 

 5749 people 
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Experimental Results 

• Face Verification on LFW 

 

 

 

 

 

 

 

 

• Examples of some image pairs from the LFW dataset and the 
similarity scores obtained from KSVD dictionary learning and 
proposed DDL-PC1 respectively. Top row: Five examples of 
‘same’ pairs; Bottom row: Five examples of ‘different’ pairs. 
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Evaluation on LFW 

• ROC curve  
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Experiments: Face Recognition 

• Extended Yale-B 
– Recognition results using random-face features on the 

Extended YaleB. 

 

 

• AR face database 
– Recognition results using random-face features on the 

Extended AR. 
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Summary 

• a novel dictionary learning approach that tackles 

the pair matching and classification problem in a 

unified framework 

• a discriminative term called ‘pairwise sparse 

code error’ based on pairwise constraints 

• + the classification error term for better 

discriminating power. 
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