

Discriminative Dictionary Learning with Pairwise Constraints

Huimin Guo Zhuolin Jiang LARRY S. DAVIS UNIVERSITY OF MARYLAND Nov. 6th, 2012

Outline

- Introduction/motivation
- Dictionary Learning
- Discriminative Dictionary Learning with Pairwise Constraints
- Experiments
 - Face verification
 - Face recognition
- Summary

Applications

- Pair-matching type problems, only binary class information
 - Face Verification (same/different)
 - Pair-matching (same/different, similar/dissimilar)
 - Image Retrieval (relevant/irrelevant)
- Classification problems, category labels provided
 - Face Recognition
 - Image Classification

— …

Motivations

- Pair matching problems are common in many practical applications; we can use provided pairwise constraints explicitly
- DDL-PCI: the learned dictionary encourages feature points from the same class (or a similar pair) to have similar sparse codes, <u>discriminative+</u>
- DDL-PC2: furthermore add in a classification error term in classifier construction for a unified objective function, <u>discriminative++</u>

Dictionary Learning

- find optimized dictionaries A* that provides a succinct representation for most statistically representative input signals
- Solving II minimization

$$< A^*, X^* >= \underset{A, X}{\operatorname{arg\,min}} \sum_{i=1}^{N} (\|y_i - Ax_i\|_2^2 + \gamma \|x_i\|_1)$$

Reconstruction Term

Regularization Term

 $(y_1...y_N)$: training signals; $(x_1...x_N)$: sparse codes for $(y_1...y_N)$

DDL-PCI

The objective function of Dictionary Learning

$$\langle A^*, X^* \rangle = \arg \min_{A,X} \sum_{i=1}^{N} \left(|| \mathbf{y}_i - A\mathbf{x}_i ||_2^2 + \gamma || \mathbf{x}_i ||_1 \right) + \frac{\beta}{2} \sum_{i,j=1}^{N} || \mathbf{x}_i - \mathbf{x}_j ||_2^2 M_{ij}$$

$$= \arg \min_{A,X} \sum_{i=1}^{N} \left(|| \mathbf{y}_i - A\mathbf{x}_i ||_2^2 + \gamma || \mathbf{x}_i ||_1 \right) + \beta \left(Tr(X^T XD) - Tr(X^T XM) \right)$$

$$= \arg \min_{A,X} \sum_{i=1}^{N} \left(|| \mathbf{y}_i - A\mathbf{x}_i ||_2^2 + \gamma || \mathbf{x}_i ||_1 \right) + \beta \left(Tr(X^T XL) \right)$$
Reconstruction Term Regularization Term Discrimination Term

 $(y_1...y_N)$: training signals; $(x_1..x_N)$: sparse codes for $(y_1...y_N)$ M: Adjacency (weight) matrix; $D = diag(d_1..d_N)$: degree matrix, where $d_i = \sum_{j=1}^N M_{ij}$ L=D-M : Laplacian matrix

Optimization

- The objective function is not convex for A and X simultaneously, but fortunately, it is convex in A (while holding X fixed) and convex in X (while holding A fixed).
- When A is fixed, we optimize each x_i alternately and fix the other x_j $(j \neq i)$ for other signals. Optimizing the objective function is equivalent to

 $\min_{x_i} L(x_i) = ||y_i - Ax_i||_2^2 + \gamma ||x_i||_1 + \frac{\beta}{2} \left(2x_i^T (XL_i) - x_i^T x_i L_{ii} \right)$ Here we modify feature sign search algorithm* to solve this convex problem.

• Given all the sparse codes X, Optimizing the objective function is equivalent to

$$\min_{A} L(A) = \sum_{i=1}^{N} ||y_{i} - Ax_{i}||_{2}^{2}, \quad s.t. \quad a_{i}^{T}a_{i} \leq 1$$

This is L2 constrained least square problem. We can optimize it using Newton's method or conjugate gradient.

DDL-PC2

• The objective function of Dictionary Learning

$$< A^*, X^*, W^* >= \underset{A,X,W}{\operatorname{arg\,min}} \sum_{i=1}^N (\|y_i - Ax_i\|_2^2 + \gamma \|x_i\|_1) + \frac{\beta}{2} \sum_{i,j=1}^N (\|x_i - x_j\|_2^2 M_{ij}) + \alpha \sum_{i=1}^N (\|h_i - Wx_i\|_2^2 + \lambda \|W\|_2^2)$$

The new term $\|h_i - Wx_i\|_2^2 + \lambda \|W\|_2^2$, where $\|h_i - Wx_i\|_2^2$ represents the classification error and $\|W\|_2^2$ is the regularization penalty term, supports learning an optimal linear predictive classifier. $h_i = [0, 0, ... 1... 0, 0]^T \in \mathbb{R}^m$ (*m*: number of classes) is a label vector corresponding to an input signal y_i , where the non-zero position indicates the class label of y_i .

- Face Verification (given same/not same)
- yl, y2 are the same person, y3, y4 are the same person, y5 y6 are different person

$$\boldsymbol{M} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & 0 \end{bmatrix}$$

Matching approach

- Face Recognition
 - class labels are given for each image in the training set. The pair relationships are derived from the category labels
 - Matrix M encoding the (dis)similarity information can be defined as

$$M_{ij} = \begin{cases} 1, \text{ if } (\boldsymbol{y}_i, \boldsymbol{y}_j) \in c_k, k = 1...m \\ 0, \text{ otherwise} \end{cases}$$

- LFW (Labeled Faces in the Wild) dataset
 - Remarkable variations caused by
 - Pose, facial appearance, age, lighting, expression,
 - occlusion, scale, camera, misalignment, hairstyle, etc.
- I 3233 images
- 5749 people

Experimental Results

• Face Verification on LFW

KSVD: 0.004

DDL: 0.500

KSVD: 0.087 DDL: 0.620

KSVD: 0.002 DDL: 0.464

KSVD: 0.263 DDL: 0.372

KSVD: 0.091 DDL: 0.205

KSVD: 0.232

DDL: 0.066

DDL: 0.101

KSVD: 0.102 DDL: -0.010

KSVD: 0.141 DDL: 0.057

KSVD: 0.133 DDL: 0.013

 Examples of some image pairs from the LFW dataset and the similarity scores obtained from KSVD dictionary learning and proposed DDL-PC1 respectively. Top row: Five examples of 'same' pairs; Bottom row: Five examples of 'different' pairs.

Evaluation on LFW

ROC curve

- Extended Yale-B
 - Recognition results using random-face features on the Extended YaleB.

Method F	K-SVD[6]	D-KSVD[13]	SRC[5]	LLC[34]	LC-KSVD[12]	DDL-PC1	DDL-PC2
Acc. (%)	90.5	94.1	88.6	82.3	95.0	94.5	95.3

- AR face database
 - Recognition results using random-face features on the Extended AR.

Method	K-SVD[6]	D-KSVD[13]	SRC[5]	LLC[34]	LC-KSVD[12]	DDL-PC1	DDL-PC2
Acc. (%)	87.2	88.8	74.5	88.7	93.7	94.0	96.0
					•		

Summary

- a novel dictionary learning approach that tackles the pair matching and classification problem in a unified framework
- a discriminative term called 'pairwise sparse code error' based on pairwise constraints
- + the classification error term for better discriminating power.

Thanks! Q&A