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Abstract

We present an approach for dictionary learning of ac-

tion attributes via information maximization. We unify the

class distribution and appearance information into an ob-

jective function for learning a sparse dictionary of action

attributes. The objective function maximizes the mutual in-

formation between what has been learned and what remains

to be learned in terms of appearance information and class

distribution for each dictionary item. We propose a Gaus-

sian Process (GP) model for sparse representation to opti-

mize the dictionary objective function. The sparse coding

property allows a kernel with a compact support in GP to

realize a very efficient dictionary learning process. Hence

we can describe an action video by a set of compact and dis-

criminative action attributes. More importantly, we can rec-

ognize modeled action categories in a sparse feature space,

which can be generalized to unseen and unmodeled action

categories. Experimental results demonstrate the effective-

ness of our approach in action recognition applications.

1. Introduction

Describing human actions using attributes is closely re-

lated to representing an object using attributes [8]. Sev-

eral studies have investigated the attribute-based approaches

for object recognition problems [12, 9, 8, 21, 30]. These

methods have demonstrated that attribute-based approaches

can not only recognize object categories, but can also de-

scribe unknown object categories. In this paper, we pro-

pose a dictionary-based approach for learning human action

attributes which are useful to model and recognize known

action categories, and also describe unknown action cate-

gories.

Dictionary learning is an approach to learn attributes

(i.e., dictionary items) from a set of training samples. In [1],

a promising dictionary learning algorithm, K-SVD, is intro-

duced to learn an over-complete dictionary. Input signals

can then be represented as a sparse linear combination of

dictionary items. K-SVD only focuses on minimizing the

reconstruction error. Discriminative K-SVD in [31] extends

K-SVD by incorporating the classification error into the ob-

jective function to obtain a more discriminative dictionary.

In this paper, we propose an approach for dictionary

learning of human action attributes via information max-

imization. In addition to using the appearance informa-

tion between dictionary items, we also exploit the class la-

bel information associated with dictionary items to learn a

compact and discriminative dictionary for human action at-

tributes. The mutual information for appearance informa-

tion and class distributions between the learned dictionary

and the rest of the dictionary space are used to define the ob-

jective function, which is optimized using a Gaussian Pro-

cess (GP) model [22] proposed for sparse representation.

The property of sparse coding naturally leads to a GP kernel

with compact support, i.e., zero values for a most portion,

for significant speed-ups. The representation and recog-

nition of actions are through sparse coefficients related to

learned attributes. A compact and discriminative attribute

dictionary should encourage the signals from the same class

to have very similar sparse representations. In other words,

the signals from the same class are described by a similar set

of dictionary items. As shown in Fig. 1, our approach pro-

duces consistent sparse representations for the same class

signals. The main contributions of this paper are:

• We propose a novel probabilistic model for sparse rep-

resentation.

• We learn a compact and discriminative dictionary for

sparse coding via information maximization.

• We describe and recognize human actions, including

unknown actions, via a set of human action attributes

in a sparse feature space.

1.1. Related Work

Discriminative dictionary learning is gaining widespread

attention in many disciplines. Some examples include

LDA-based basis selection [7], combined dictionary learn-

ing and classifier training [31, 28, 20], distance ma-

trix learning [2], hierarchical pairwise merging of vi-

sual words [26], maximization of mutual information

(MMI) [14, 24, 17], and sparse coding-based dictionary

learning [18, 19, 10].

Recent dictionary-based approaches for learning action

attributes include agglomerative clustering [25], forward se-
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Figure 1: Sparse representations of four actions (two are known and two are unknown to the attribute dictionary) using

attribute dictionaries learned by different methods. Each action is performed by two different humans. For visualization

purpose, each waveform shows the average of the sparse codes of all frames in an action sequence. We learned attribute

dictionaries using several methods including our approach, the Maximization of Entropy approach (ME), the Liu-Shah ap-

proach [17] and the K-means approach. A compact and discriminative attribute dictionary should encourage actions from

the same class to be described by a similar set of attributes, i.e., similar sparse codes. The attribute dictionary learned by our

approach provides similar waveforms, which shows consistent sparse representations, for the same class action sequences.

lection [27] and probabilistic graphical model [6]. [15] pro-

poses an unsupervised approach and uses l1 minimization

to find basic primitives to represent human motions.

Our approach adopts the rule of Maximization of Mutual

Information to obtain a compact and discriminative dictio-

nary. The dictionary items are considered as attributes in

our approach. Compared to previous methods, our approach

maximizes the mutual information for both the appearance

information and class distribution of dictionary items to

learn a dictionary while [24] and [17] only maximize the

mutual information for class distribution. Thus, we can ex-

pect improved dictionary compactness from our approach.

Both [24] and [17] obtain a dictionary through merging of

two visual words, which can be time-consuming when the

dictionary size is large. Besides, our approach is efficient

because the dictionary is learned in the sparse feature space

so we can leverage the property of sparse coding to use ker-

nel locality for speeding up the dictionary learning process.

2. Action Features and Attributes

Human action features are extracted from an action in-

terest region for representing and describing actions. The

action interest region is defined as a bounded region around

the human performing the activity, which is obtained using

background subtraction and/or tracking.

2.1. Basic Features

The human action attributes require feature descriptors

to represent visual aspects. We introduce basic features, in-

cluding both local and global features, used in our work.

Global Features: Global features encode rich informa-

tion from an action interest region, so they generally per-

form better than local features in recognition. When cam-

eras and backgrounds are static, we use the silhouette-based

feature descriptor presented in [16] to capture shape infor-

mation, while we use the Histogram of Oriented Gradient

(HOG) descriptors used in [4] for dynamic backgrounds and

moving cameras. For encoding motion information, we use

the optical-flow based feature descriptors as in [5].

Local Features: Spatio-temporal local features describe

a video as a collection of independent patches or 3D

cuboids, which are less sensitive to viewpoint changes,

noise and partial occlusion. We first extract a collection of

space-time interest points (STIP) introduced in [13] to rep-

resent an action sequence, and then use HOG and histogram

of flow to describe them.



2.2. Human Action Attributes

Motivated by [25, 27, 6], an action can be represented

as a set of basic action units. We refer to these basic ac-

tion units as human action attributes. In order to effectively

describe human actions, we need to learn a representative

and semantic set of action attributes. Given all the base fea-

tures from the training data, we aim to learn a compact and

discriminative dictionary where all the dictionary items can

be used as human action attributes. The final learned dic-

tionary can be used as a “Thesaurus” of human action at-

tributes.

3. Learning Attribute Dictionary

We first obtain an initial dictionary via K-SVD [1]. Then

we learn a compact and discriminative dictionary from the

initial dictionary via information maximization.

3.1. Dictionary Initialization

As the optimal dictionary size is rarely known in ad-

vance, we obtain through K-SVD an initial dictionary Do

of a large size K. K-SVD [1] is a method to learn an

over-complete dictionary for sparse coding. Let Y be a

set of N input signals in a n-dimensional feature space

Y = [y1...yN ], yi ∈ R
n. In K-SVD, a dictionary with a

fixed number of K items is learned by finding a solution

iteratively to the following problem:

argmin
D,X

‖Y −DX‖22 s.t.∀i, ‖xi‖0 ≤ T (1)

where D = [d1...dK ], di ∈ R
n (K > n) is the learned

dictionary, X = [x1, ..., xN ], xi ∈ R
K are the sparse codes

of input signals Y , and T specifies the sparsity that each

signal has fewer than T items in its decomposition. Each

dictionary item di is l2-normalized. The initial dictionary

Do from (1) only minimizes the reconstruction error, and is

not optimal in terms of compactness and discriminability.

3.2. Probabilistic Model for Sparse Representation

Before we present our dictionary learning framework,

we first suggest a novel probabilistic model for sparse rep-

resentation motivated by [11].

3.2.1 A Gaussian Process

Given a set of input signals Y , Y = [y1...yN ], yi ∈ R
n,

there exists an infinite dictionary space D ⊆ R
n. Each dic-

tionary item di ∈ D maps the set of input signals to its

corresponding sparse coefficients xdi
= [xi,1...xi,N ] in X ,

which can be viewed as its observations to the set of input

signals. When two dictionary items di and dj are similar,

it is more likely that input signals will use them simultane-

ously in their sparse decomposition [21]. Thus the simi-

larity of two dictionary items can be assessed by the corre-

lation between their observations (i.e., sparse coefficients).

Such correlation properties of sparse coefficients has been

used in [21] to cluster dictionary items.

With the above formulation, we obtain a problem which

is commonly modeled as a Gaussian Process (GP). A GP

is specified by a mean function and a symmetric positive-

definite covariance functionK. Since we simplify our prob-

lem by assuming an initial dictionary Do, we only need to

specify entries in the covariance function K for items exist-

ing in Do, and leave the rest undefined. For each pair of

dictionary items ∀di, dj ∈ Do, we define the corresponding

covariance function entryK(i, j) as the covariance between

their associated sparse coefficients cov(xdi
, xdj

). For sim-

plicity, we use the notation K(di,dj) to refer to the covari-

ance entry at indices di, dj . Similarly, we use K(D∗,D∗) to

denote the covariance matrix for a set of dictionary items

D∗.
The GP model for sparse representation gives us the fol-

lowing useful property: given a set of dictionary items D∗

and the associated sparse coefficients XD∗ , the distribution

P (Xd∗ |XD∗) at any given testing dictionary item d∗ is a

Gaussian with a closed-form conditional variance [22].

V(d∗|D∗) = K(d∗,d∗) −K
T
(d∗,D∗)K

−1
(D∗,D∗)K(d∗,D∗)(2)

whereK(d∗,D∗) is the vector of covariances between d∗ and

each item in D∗.

3.2.2 Dictionary Class Distribution

When the set of input signals Y is labeled with one of M
discrete class labels, we can further derive class related dis-

tributions over the sparse representation.

As mentioned, each dictionary item di maps the set of

input signals to its corresponding sparse coefficients xdi
=

[xi,1...xi,N ] in X . Since each coefficient xi,j here corre-

sponds to an input signal yj , it is associated with a class

label. If we aggregate xdi
based on class labels, we obtain

a M sized vector. After normalization, we have the con-

ditional probability P (L|di), L ∈ [1,M ], where P (L|di)
represents the probability observing a class given a dictio-

nary item.

3.3. Dictionary Learning for Attributes

Given the initial dictionary Do obtained from (1), we aim

to compress it into a dictionary D∗ of size k, which encour-

ages the signals from the same class to have very similar

sparse representations, as shown in Fig. 1. In other words,

the signals from the same class are described by a similar

set of attributes, i.e., dictionary items. Therefore, a com-

pact and discriminative dictionary is more desirable.

An intuitive heuristic is to start with D∗ = ∅, and it-

eratively choose the next best item d∗ from Do\D∗ which



provides a maximum increase for the entropy of D∗, i.e.,

argmaxd∗ H(d∗|D∗), until |D∗| = k, where Do\D∗ de-

notes the remaining dictionary items after D∗ has been re-

moved from the initial dictionary Do. With our GP model-

ing, we can evaluate H(d∗|D∗) as a closed-form Gaussian

conditional entropy,

H(d∗|D∗) =
1

2
log(2πeV(d∗|D∗)) (3)

where V(d∗|D∗) is defined in (2). This heuristic is a good

approximation to the maximization of joint entropy (ME)

criteria, i.e., argmaxD∗ H(D∗).

With the ME rule, as items in the learned dictionary are

less correlated to each other due to their high joint entropy,

the learned dictionary is compact. However, the maximal

entropy criteria will favor attributes associated with the be-

ginning and the end of an action, as they are least correlated.

Such a phenomenon is shown in Fig. 3b and Fig. 3d in the

experiment section. Thus we will expect high reconstruc-

tion error and weak discriminability. To mitigate this in our

dictionary learning framework, we adopt Maximization of

Mutual Information (MMI) as the criteria for ensuring dic-

tionary compactness and discriminability.

3.3.1 MMI for Unsupervised Learning (MMI-1)

The rule of maximization of entropy only considers the en-

tropy of dictionary items. Instead we choose to learn D∗

that most reduces the entropy about the rest of dictionary

items Do\D∗.

argmax
D∗

I(D∗;Do\D∗) (4)

It is known that maximizing the above criteria is NP-

complete. Fortunately, a similar problem has been stud-

ied in the machine learning literature [11]. We can use a

very simple greedy algorithm here. We start with D∗ = ∅,
and iteratively choose the next best dictionary item d∗ from

Do\D∗ which provides a maximum increase in mutual in-

formation, i.e.,

arg max
d∗∈Do\D∗

I(D∗ ∪ d∗;Do\(D∗ ∪ d∗))− I(D∗;Do\D∗)

= H(d∗|D∗)−H(d∗|D̄∗); (5)

where D̄∗ denotes Do\(D∗∪d∗). Intuitively, the ME crite-

ria only considers H(d∗|D∗), i.e., force d∗ to be most dif-

ferent from already selected dictionary items D∗, now we

also consider −H(d∗|D̄∗) to force d∗ to be most represen-

tative among the remaining items.

It has been proved in [11] that the above greedy algo-

rithm serves a polynomial-time approximation that is within

(1 − 1/e) of the optimum. Based on similar arguments

in [11], the near-optimality of our approach can be guar-

anteed if the initial dictionary size |Do| is sufficiently larger

than 2|D∗|.
With our proposed GP model, the objective function in

(5) can be written in a closed form using (2) and (3).

arg max
d∗∈Do\D∗

K(d∗,d∗) −K
T
(d∗,D∗)K

−1
(D∗,D∗)K(d∗,D∗)

K(d∗,d∗) −K
T
(d∗,D̄∗)

K−1
(D̄∗,D̄∗)

K(d∗,D̄∗)

(6)

Given the initial dictionary size |Do| = K, each iteration

requiresO(K4) to evaluate (6). Such an algorithm seems to

be computationally infeasible for any large initial dictionary

size. The nice feature of this approach is that we model the

covariance kernel K over sparse codes X , which entitles

K a compact support, i.e., most portion of K has zero or

very tiny value. After we ignore those zero valued entries

while evaluating (6), the actual computation becomes very

efficient.

3.3.2 MMI for Supervised Learning (MMI-2)

The objective functions in (4) and (5) only consider the ap-

pearance information of dictionary items, hence D∗ is not

optimized for classification. For example, attributes to dis-

tinguish a particular class can possibly be missing in D∗.
So we need to use appearance information and class dis-

tribution to find a dictionary that also causes minimal loss

information about labels.

Let L denote the labels of M discrete values, L ∈ [1,M ].
In Sec. 3.2.2, we discussed how to obtain P (L|d∗), which

represents the probability of observing a class given a dic-

tionary item. Give a set of dictionary item D∗, we define

P (L|D∗) = 1
|D∗|

∑
di∈D∗ P (L|di). For simplicity, we de-

note P (L|d∗) as P (Ld∗), and P (L|D∗) as P (LD∗).
To enhance the discriminative power of the learned dic-

tionary, we propose to modify the objective function (4) to

argmax
D∗

I(D∗;Do\D∗) + λI(LD∗ ;LDo\D∗) (7)

where λ ≥ 0 is the parameter to regularize the emphasis on

appearance or label information. When we approximate (7)

as

arg max
d∗∈Do\D∗

[H(d∗|D∗)−H(d∗|D̄∗)]

+λ[H(Ld∗ |LD∗)−H(Ld∗ |LD̄∗)] (8)

we can easily notice that we also force the classes associated

with d∗ to be most different from classes already covered by

selected items D∗; and at the same time, the classes asso-

ciated with d∗ should be most representative among classes

covered by the remaining items. Thus the learned dictionary

is not only compact, but also covers all classes to maintain

the discriminability. It is interesting to note that MMI-1 is a

special case of MMI-2 with λ = 0.
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Figure 2: Purity and compactness of learned dictionary D∗: purity is the histograms of the maximum probability observing

a class given a dictionary item, and compactness is the histograms of D∗TD∗. At the right-most bin of the respective figures,

a discriminative and compact dictionary should exhibit high purity and small compactness. MMI-2 dictionary is most “pure”

and second most compact (MMI-1 is most compact but much less pure.)

4. Experimental Evaluation

This section presents an experimental evaluation on

three public datasets: the Keck gesture dataset [16], the

Weizmann action dataset [3] and the UCF sports action

dataset [23]. On the Keck gesture dataset, we thoroughly

evaluate the basic behavior of our two proposed dictio-

nary learning approaches MMI-1 and MMI-2, in terms of

dictionary compactness and discriminability, by compar-

ing with other three alternatives. Then we further evaluate

the discriminability of our learned action attributes over the

popular Weizmann action dataset and the challenging UCF

sports action dataset.

4.1. Comparison with Alternative Approaches

The Keck gesture dataset consists of 14 different ges-

tures, which are a subset of the military signals. These 14

classes include turn left, turn right, attention left, attention

right, flap, stop left, stop right, stop both, attention both,

start, go back, close distance, speed up, come near. Each of

the 14 gestures is performed by three subjects. Some sam-

ple frames from this dataset are shown in Fig. 1.

4.1.1 Alternative Methods for Comparison

For comparison purposes, in addition to the maximiza-

tion of entropy (ME) method discussed before, we also

implemented two additional action attributes learning ap-

proaches. The first approach is similar to the approach pre-

sented in [17] to obtain a compact and discriminative human

action model. We revise it for sparse representation and re-

fer to it as the Liu-Shah method.

Liu-Shah: In this approach, we start with an initial dic-

tionary Do obtained from K-SVD. At each iteration, for

each pair of dictionary items, d1 and d2, we compute the

MI loss if we merge these two into a new dictionary item

d∗, and pick the pair which gives the minimum MI loss. We

continue the merging process till the desired dictionary size.

The MI loss is defined as,

△I(d1, d2)=
∑

L∈[1,M ],i=1,2

p(di)p(L|di) log p(L|di)

−p(di)p(L|di) log p(L|d
∗) (9)

where p(L|d∗) = p(d1)
p(d∗)p(L|d1) + p(d2)

p(d∗)p(L|d2) and

p(d∗) = p(d1) + p(d2)
k-means: The second approach is to simply perform k-

means over an initial dictionary Do from K-SVD to obtain

a desired size dictionary.

4.1.2 Dictionary Purity and Compactness

Through K-SVD, we start with an initial 500 size dictio-

nary using the shape feature (sparsity 30 is used). We then

learned a 40 size dictionary D∗ from Do using 5 different

approaches. We let λ = 1 in (8) throughout the experiment.

To evaluate the discriminability and compactness of these

learned dictionaries, we evaluate the purity and compact-

ness measures as shown in Fig. 2. The purity is assessed

by the histograms of the maximum probability observing a

class given a dictionary item, i.e., max(P (L|di)), and the

compactness is assessed by the histograms of D∗TD∗. As

each dictionary item is l2-normalized, dtidj ∈ [0, 1] and in-

dicates the similarity between the dictionary items di and

dj . Fig. 2a shows MMI-2 is most “pure”, as around 25%
of dictionary items learned by MMI-2 have 0.6-above prob-

ability to only associate with one of the classes. Liu-Shah

shows comparable purity to MMI-2 as the MI loss criteria

used in Liu-Shah does retain the class information during

dictionary learning. However, as shown in Fig. 2b, MMI-2

dictionary is much more compact, as only about 20% MMI-

2 dictionary items have 0.80-above similarity. As expected,

comparing to MMI-2, MMI-1 shows better compactness but

much less purity.
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Figure 3: Learned attribute dictionaries on shape features (“unseen” classes: flap, stop both and attention both)
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Figure 4: Recognition accuracy on the Keck gesture dataset with different features and dictionary sizes (shape and motion

are global features. STIP [13] is a local feature.). The recognition accuracy using initial dictionary Do: (a) 0.23 (b) 0.42 (c)

0.71 (d) 0.81. In all cases, the proposed MMI-2 (red line) outperforms the rest.

4.1.3 Describing Unknown Actions

We illustrate here how unknown actions can be described

through a learned attribute dictionary. We first obtain a 500

size initial shape dictionary Do using 11 out of 14 gesture

classes, and keep flap, stop both and attention both as un-

known actions. We would expect nearly perfect description

to these unknown actions, as we notice these three classes

are composed by attributes observed in the rest classes. For

example, flap is a two-arm gesture “unseen” by the attribute

dictionary, but its left-arm pattern is similar to turn left, and

right-arm is similar to turn right.

As shown in Fig. 3, we learned 40 size dictionaries using

MMI-2, ME and Liu-Shah respectively from Do. Through

visual observation, ME dictionary (Fig. 3b) is most compact

as dictionary items look less similar to each other. However,

different from the MMI-2 dictionary (Fig. 3a), it contains

shapes mostly associated with the action start and end as

discussed in Sec. 3.3, which often results in high reconstruc-

tion errors shown in Fig. 3d. Liu-Shah dictionary (Fig. 3c)

only concerns about the discriminability, thus obvious re-

dundancy can be observed in its dictionary. We see from

Fig. 3d that, though the action flap is unknown to the dictio-

nary, we still obtain a nearly perfect reconstruction through

MMI-2, i.e., we can perfectly describe it using attributes in

dictionary with corresponding sparse coefficients.

4.1.4 Recognition Accuracy

In all of our experiments, we use the following classification

schemes: when the global features, i.e., shape and motion,

are used for attribute dictionaries, we first adopt dynamic

time warping (DTW) to align and measure the distance be-

tween two action sequences in the sparse code domain; then



Figure 5: Sample frames from the UCF sports action dataset. The actions include: diving, golfing, kicking, weight-lifting,

horse-riding, running, skateboarding, swinging-1 (on the pommel horse and on the floor), swinging-2 (at the high bar),

walking.

a k-NN classifier is used for recognition. When the local

feature STIP [13] is used, DTW becomes not applicable,

and we simply perform recognition using a k-NN classifier

based on the sparse code histogram of each action sequence.

In Fig. 4, we present the recognition accuracy on the

Keck gesture dataset with different dictionary sizes and over

different global and local features. We use a leave-one-

person-out setup, i.e., sequences performed by a person are

left out, and report the average accuracy. We choose an ini-

tial dictionary size |Do| to be twice the dimension of an in-

put signal and sparsity 10 is used in this set of experiments.

In all cases, the proposed MMI-2 outperforms the rest. The

sparse code noise has more effects on the DTW methods

than the histogram method, thus, MMI-2 brings more im-

provements on global features over local features. The peak

recognition accuracy obtained from MMI-2 is comparable

to 92.86% (motion), 92.86% (shape), 95.24% (shape and

motion) reported in [16].

As discussed, the near-optimality of our approach can be

guaranteed if the initial dictionary size |Do| is sufficiently

larger than 2|D∗|. We usually choose a size for D∗ to keep

|Do| be 10 to 20 times larger. As shown in Fig. 4, such dic-

tionary size range usually produces good recognition per-

formance. We can also decide |D∗|when the MI increase in

(8) is below a predefined threshold, which can be obtained

via cross validation from training data.

4.2. Discriminability of Learned Action Attributes

In this section, we further evaluate the discriminative

power of learned action attributes using MMI-2.

4.2.1 Recognizing Unknown Actions

The Weizmann human action dataset contains 10 different

actions: bend, jack, jump, pjump, run, side, skip, walk,

wave1, wave2. Each action is performed by 9 different peo-

ple. We use the shape and the motion features for attribute

dictionaries. In the experiments on the Weizmann dataset,

we learn a 50 size dictionary from a 1000 size initial dic-

tionary and the sparsity 10 is used. When we use a leave-

one-person-out setup, we obtain 100% recognition accuracy

over the Weizmann dataset.

To evaluate the recognition performance of attribute rep-

resentation for unknown actions, we use a leave-one-action-

out setup for dictionary learning, and then use a leave-one-

person-out setup for recognition. In this way, one action

Figure 6: Confusion matrix for UCF sports dataset

class is kept unknown to the learned attribute dictionary,

and its sparse representation using attributes learned from

the rest classes is used for recognition. The recognition ac-

curacy is shown in Table 1.

It is interesting to notice from the second row of Ta-

ble 1 that only jump can not be perfectly described using

attributes learned from the remaining 9 actions, i.e., jump

is described by a set of attributes not completely provided

by the rest actions. By examining the dataset, it is easy to

notice that jump does exhibit unique shapes and motion pat-

terns.

As we see from the third row of the table, omitting

attributes of the wave2, i.e., the wave-two-hands action,

brings down the overall accuracy most. Further investiga-

tion shows that, when the wave2 attributes are not present,

such accuracy loss is caused by 33% pjump being misclas-

sified as jack, which means the attributes contributed by

wave2 is useful to distinguish pjump from jack. This makes

great sense as jack is very similar to pjump but jack contains

additional wave-two-hands pattern.

4.2.2 Recognizing Realistic Actions

The UCF sports dataset is a set of 150 broadcast sports

videos and contains 10 different actions shown in Fig. 5. It

is a challenging dataset with a large scenes and viewpoints

variability. As the UCF dataset often involves multiple peo-

ple in the scene, we use tracks from ground-truth annota-

tions. We use the HOG and the motion features for attribute

dictionaries. We learned a 60 size dictionary from a 1200
size initial dictionary and the sparsity 10 is used. We adopt



Unknown Action bend jack jump pjump run side skip walk wave1 wave2

Action Accuracy 1.00 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Overall Accuracy 1.00 1.00 0.98 0.98 1.00 1.00 1.00 0.99 0.97 0.94

Table 1: Recognition accuracy on the Weizmann dataset using a leave-one-action-out setup for dictionary learning. The

second row is the recognition accuracy on the unknown action, and the third row is the overall average accuracy over all

classes given the unknown action. The second row reflects the importance of attributes learned from the rest actions to

represent the unknown action, and the third row reflects the importance of attributes from the unknown action to represent

the rest actions.

a five-fold cross-validation setup. With such basic features

and a simple k-NN classifier, we obtain 83.6% average

recognition accuracy over the UCF sports action dataset,

and the confusion matrix is shown in Fig. 6. Though we

use a much simpler classifier, our accuracy is comparable

to the 86.6% reported in [29]. The accuracy numbers re-

ported here show how the learned attribute representation of

human actions can improve the recognition even with basic

features and a simple classifier.

5. Conclusion

We presented an attribute dictionary learning approach

via information maximization for action recognition. By

formulating the mutual information for appearance infor-

mation and class distributions between the learned dictio-

nary and the rest of dictionary space into an objective func-

tion, we learned a dictionary that is both representative and

discriminative. The objective function is optimized through

a GP model proposed for sparse representation. The sparse

representations for signals enable the use of kernels locality

in GP to speed up the optimization process. An action se-

quence is described through a set of action attributes, which

enable both modeling and recognizing actions, even includ-

ing “unseen” human actions. Our future work includes how

to automatically update the learned dictionary for a new ac-

tion category.
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