Learning Discriminative Features via Label Consistent Neural Network

<u>Zhuolin Jiang</u>, Yaming Wang, Larry Davis, Walt Andrews, Viktor Rozgic

03-27-2017

Overview

Motivations

- Feature learning of hidden layers receive no direct guidance on class information
- Early hidden layers of a CNN tend to capture low-level features shared across categories such as edges and corners, while late hidden layers are more class-specific
- Our contributions
 - We propose a supervised feature learning method, *Label Consistent Neural Network* (LCNN), which enforces direct supervision in late hidden layers
 - LCNN can learn class-specific neurons or discriminative features

Discriminative Representations

Discriminative Representations

Label Consistent Neural Network

- Overview
 - Explicit supervision of a hidden layer
 - Encourages the hidden layer representation to approximate "ideal discriminative representation"

Overall objective function of LCNN

$$L = L_c + \alpha L_r$$

where L_r is the discriminative representation error:,

$$L_r = L_r(\mathbf{x}^{(l)}, y, \mathbf{A}^{(l)}) = \|\mathbf{q}^{(l)} - \mathbf{A}^{(l)}\mathbf{x}^{(l)}\|_2^2$$

where $q^{(I)}$ is the ideal discriminative representation

• Ideal discriminative representations Given six neurons {d₁...d₆} and five samples {y₁...y₅}

$$\mathbf{Q}^{(l)} = \begin{bmatrix} y_1 & y_2 & y_3 & y_4 & y_5 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \\ d_5 \\ d_6 \end{bmatrix}$$

Experiments

• UCF-101

Network Architecture	Spatial	Temporal	Both
ClarifaiNet [28]	72.7	81	87
VGGNet-19 [41]	75.7	78.3	86.7
VGGNet-16 [36]	79.8	85.7	90.9
VGGNet-16* [36]	-	85.2	-
baseline	77.48	83.71	-
LCNN-1	80.1	85.59	89.87
LCNN-2 (argmax)	80.7	85.57	91.12
LCNN-2 $(k-NN)$	81.3	85.77	89.84

• THUMOS15

Network Architecture	Spatial	Temporal	Both
VGGNet-16 [36]	54.5	42.6	-
ClarifaiNet [28]	42.3	47	-
GoogLeNet [32]	53.7	39.9	-
baseline	55.8	41.8	-
LCNN-1	56.9	45.1	59.8
LCNN-2 (argmax)	57.3	44.9	61.7
LCNN-2 (k -NN)	58.6	45.9	62.6

• Cifar-10

Method (Without Data Augment.)	Test Error (%)
Stochastic Pooling [42]	15.13
Maxout Networks [7]	11.68
DSN [21]	9.78
baseline	10.41
LCNN-2 (argmax)	9.75
Method (With Data Augment.)	Test Error (%)
Method (With Data Augment.) Maxout Networks [7]	Test Error (%) 9.38
Method (With Data Augment.) Maxout Networks [7] DropConnect [33]	Test Error (%) 9.38 9.32
Method (With Data Augment.) Maxout Networks [7] DropConnect [33] DSN [21]	Test Error (%) 9.38 9.32 8.22
Method (With Data Augment.) Maxout Networks [7] DropConnect [33] DSN [21] baseline	Test Error (%) 9.38 9.32 8.22 8.81

• Caltech-101

Method	Accuracy(%)
LC-KSVD [14]	73.6
Zeiler [43]	86.5
Dosovitskiy [4]	85.5
Zhou [45]	87.2
He [9]	91.44
baseline	87.1
LCNN-1 $(k-NN)$	88.51
LCNN-2 (argmax)	90.11
LCNN-2 $(k-NN)$	89.45
baseline*	92.5
LCNN-2* (argmax)	93.7
LCNN-2* (k-NN)	93.6

Thank you!