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Abstract. We present an online semi-supervised dictionary learning al-
gorithm for classification tasks. Specifically, we integrate the reconstruc-
tion error of labeled and unlabeled data, the discriminative sparse-code
error, and the classification error into an objective function for online
dictionary learning, which enhances the dictionary’s representative and
discriminative power. In addition, we propose a probabilistic model over
the sparse codes of input signals, which allows us to expand the labeled
set. As a consequence, the dictionary and the classifier learned from
the enlarged labeled set yield lower generalization error on unseen data.
Our approach learns a single dictionary and a predictive linear classi-
fier jointly. Experimental results demonstrate the effectiveness of our
approach in face and object category recognition applications.

1 Introduction

Learning dictionaries for sparse coding has recently led to state-of-art perfor-
mances in many computer vision tasks [1–4]. The performance of image classifi-
cation, in particular, has been further improved by learning discriminative dictio-
naries for sparse coding. Consider an input signal x ∈ Rn. It can be represented
as a linear combination of a few atoms from a dictionary D = {d1...dK} ∈ Rn×K ,
i.e., x = Dz. The vector z ∈ RK is called the sparse code of x with respect to
D. The resulting z is discriminative when D has discriminative power.

Some discriminative dictionary learning approaches have been proposed re-
cently for classification [5–10]. However, most of them are based on iterative
batch procedures [11, 5, 9, 12], which access the whole dataset at each iteration
and optimize over all data. For large scale datasets, this becomes a big chal-
lenge due to memory requirements and computational complexity. Although
some online dictionary learning algorithms [13, 14] have been proposed for im-
age restoration purpose recently, incorporating the discriminative information in
online dictionary learning for discriminative tasks has not been fully explored.

Learning a discriminative dictionary usually requires sufficient labeled train-
ing data, which is expensive and difficult to obtain. Insufficient labeled training
data yields a dictionary with potentially bad generalization power. By exploiting
the information provided by the vast quantity of inexpensive unlabeled data, we
aim to develop an online algorithm to learn a dictionary which is more represen-
tative and discriminative than a dictionary trained using only a limited number
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of labeled samples in a batch procedure [15]. More importantly, we show how to
identify those ‘important’ unlabeled data points, such as the points located near
the decision boundary in sparse feature space, or points representing items very
different from those we have seen before, and manually label those points in an
active learning setting [16].

In this paper, we propose an online, semi-supervised dictionary learning algo-
rithm that integrates dictionary learning and classifier training. We introduce a
novel objective function which includes terms representing the reconstruction er-
ror of both labeled and unlabeled data, the discriminative sparse-code error, and
the classification error. Compared to supervised dictionary learning approaches,
our approach improves the representation power of the dictionary by exploit-
ing the unlabeled data. It takes the reconstruction error of the unlabeled data
to account in the objective function, and treats the unlabeled points with high
confidence in label prediction as ‘labeled’ points. In addition, it identifies the
unlabeled points with the most uncertainty in label prediction for manually la-
beling. Our approach learns a single over-complete dictionary and an optimal
linear classifier jointly. Our main contributions are:

– We propose an online framework of discriminative dictionary learning for
classification tasks, which is suitable for large data sets or dynamic training.

– The dictionary learns from labeled samples for discrimination as well as a
large number of unlabeled samples. Learning from unlabeled data further
increases its representative power.

– Our approach actively identifies the hard classified samples to be manually
labeled and selects the easily classified samples as labeled data, using a prob-
abilistic model of the sparse code of an input signal. In this way, unlabeled
data also contribute to learning discriminative dictionaries with minimal
human supervision.

1.1 Related Work

Discriminative dictionary learning for sparse coding has received a lot of atten-
tion recently. Some approaches treat dictionary learning and classifier training as
two separate processes as in [18, 8, 19–21]. The sparse codes associated with the
dictionary trained in the first step are later fed into classifiers such as SVMs as
feature attributes. For those methods, the discrimination power comes from ei-
ther the sophisticated classifiers in the later stage, or learning multiple category-
specific dictionaries [20, 22, 8], which might not be suitable when there are a large
number of classes. Some other approaches incorporate category label informa-
tion into the dictionary training process [6, 8, 7, 5, 12, 23, 9]. The dictionaries are
learned by optimizing a unified objective function combining reconstructive and
discriminative terms. In general, the optimization processes are iterative batch
procedures: [6] alternates between dictionary construction and classifier design,
and [8, 7, 9] alternate between supervised sparse coding and dictionary update.
However these existing approaches cannot handle very large training sets.

To address these issues, several incremental learning or online learning algo-
rithms [24, 13, 14, 17] have been proposed recently. [24] utilizes first-order stochas-
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Fig. 1. Examples of sparse codes using dictionaries learned by different approaches on the Extended
YaleB, Caltech101, and Caltech256 datasets. Each waveform indicates a sum of absolute sparse codes
for different testing images from the same class. The 1st, 2nd, and 3nd row correspond to class 11
(28 testing frames) in Extended YaleB, class 18 (61 testing frames) in Caltech101, and class 101
(123 testing frames) in Caltech256 respectively. (a) are sample images from these classes. Each color
from the color bar in (b) represents one class for a subset of dictionary items. The black dashed lines
indicate that the curves are highly peaked in one class. (c) Online Dictionary Learning for sparse
coding (ODLSC) [13], (d) Incremental Dictionary Learning (IDL) [14], (e) Large Scale Dictionary
Learning (LSDL) [17]. The figure is best viewed in color and 600% zoom in.

tic gradient descent with projections on the constraint set for dictionary learn-
ing. [13] efficiently minimizes a quadratic surrogate function of the empirical cost
over the set of constraints at each step. [14] utilizes locality constraints to project
each descriptor into its local-coordinate system so that the objective function
can be optimized analytically. The dictionary is then updated incrementally in
a gradient descent fashion. Unfortunately, all of these techniques focus on mini-
mizing the reconstruction error, which is good for reconstruction tasks but not
for discrimination tasks such as classification. One of the major difficulties here
is that we cannot afford to obtain sufficient labeled training samples. Therefore,
learning a discriminative dictionary in an online fashion with minimal human
supervision becomes an interesting problem.

2 Sparse Representation and Dictionary Learning

Consider a set of N input signals X = [x1...xN ] ∈ Rn×N . Given a dictionary
D of size K, the sparse representations Z = [z1...zN ] ∈ RK×N for X can be
obtained by:

Z = argmin
Z

||X −DZ||22, s.t.∀i, ∥zi∥0 ≤ ε (1)

where ∥zi∥0 ≤ ε is a sparsity constraint. The performance of sparse representa-
tion highly depends on D. Traditional dictionary learning for sparse coding is
achieved by minimizing the empirical reconstruction error:

< D,Z >= argmin
D,Z

||X −DZ||22, s.t.∀i, ∥zi∥0 ≤ ε (2)

where D = [d1...dK ] ∈ Rn×K is the learned dictionary. In general, the number
of training samples is larger than the size of D (N ≫ K), and xi only uses
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a few dictionary items out of total K for its reconstruction under the sparsity
constraint. K-SVD [11] is an efficient algorithms to solve (2); it alternates be-
tween dictionary construction and sparse coding while keeping the other fixed
until convergence is achieved. However, K-SVD only focuses on minimizing the
reconstruction error. In addition, for a large training set, batch optimization
techniques may be impractical.

There are two classes of algorithms that solve the optimization problems
in (2) even with large training sets. One is classical projected first-order stochas-
tic gradient descent [24, 17]. With an appropriate selection of a learning rate,
the dictionary is sequentially updated by:

Dt = Πc

[
Dt−1 −

ρ

t
∇Dl(xt, Dt−1)

]
, (3)

Another class of algorithms does not require explicit learning rate tuning;
instead, they exploit the structure of the problem based on the second-order
stochastic approximation [13]. The new dictionary Dt is computed by minimiz-
ing the following cost function over the convex set C = {D ∈ Rn×K , s.t.∀j =
1, ...,K,dj

Tdj ≤ 1}

Dt = argmin
D∈C

1

t

t∑
i=1

1

2
||xi −Dzi||22 + λ||zi||0

= argmin
D∈C

1

t

(
1

2
Tr(DTD

t∑
i=1

ziz
T
i )− Tr(DT

t∑
i=1

xiz
T
i )

)

= argmin
D∈C

1

t

(
1

2
Tr(DTDAt)− Tr(DTBt)

)
(4)

With some simple algebra, it is easy to show that algorithm 1 (below) gives
the solution to the convex optimization problem with respect to the j-th col-
umn while keeping the others fixed. Here matrices A =

∑t
i=1 ziz

T
i and B =∑t

i=1 xiz
T
i propagate information from the past. This efficient online algorithm

outperforms its batch counterpart in natural image experiments [13].
Unfortunately, these online algorithms are not explicitly designed for classi-

fication tasks. To further enhance the discrimination power of the dictionary, we
propose an online semi-supervised dictionary learning algorithm which will be
discussed in the next section.

3 Online Semi-Supervised Dictionary Learning

3.1 Problem Statement

To improve the discriminative power of a dictionary, we follow [9] and combine
two discriminative term- the ‘discriminative sparse-code error’ and the ‘classifi-
cation error’- with the reconstruction error term to form an objective function
for dictionary learning. In this way, the dictionary and the classifier are learned
jointly. To take advantage of the large number of inexpensive unlabeled data,
the reconstructive term consists of two parts: one from labeled training data and
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the other from unlabeled training data. To be concrete, the objective function
for our dictionary learning is defined as:

< D,G,W,Z >= arg min
D,G,W,Z

α∥Xu −DZu∥22 + β||X l −DZl||22

+γ||Q−GZl||22 + ||H −WZl||22 s.t.∀i, ∥zi∥0 ≤ ε (5)

The superscripts u and l specify whether the sample is from the unlabeled
set or the labeled set. The first two terms are the reconstruction errors, while
the last two terms are the discrimination errors. Parameters α, β, γ control the
relative weight of these terms. In the ∥Q − GZl∥22 term, Q = [ql

1, ...,q
l
N ] is a

label-consistency matrix of size K×N l, with N l being the number of the labeled
training samples. Each dictionary item in our approach is attached to a specific
class label. Each column qj ∈ RK is a discriminative sparse code corresponding
to xj . qj(i) = 1 only when dictionary item di and the training point xj share
the same class label; otherwise qj(i) = 0, i = 1...K. G ∈ RK×K is a linear
transformation matrix that projects the sparse codes z to a discriminative sparse
feature space RK .

The term ||H − WZl||22 measures the classification error. Suppose we have
m classes in the classification task. A linear predictive classifier f(z;W ) = Wz
is employed, where W ∈ Rm×K is the classifier parameters. A column hi of
H = [h1, ..., hN ] ∈ Rm×N is the label vector for xi, where non-zero position
indicates the category label of xi. The classifier W is learned jointly with the
transformation matrix G and the dictionary D by solving (5).

A major consideration in choosing a suitable optimization method is that
since our problem is to be solved in an online learning setting, we cannot sepa-
rate the labeled set and the unlabeled set in advance. Supervised learning and
the unsupervised learning interleave as new data comes in; thus we require an
adaptive strategy.

3.2 Optimization

Our algorithm alternates between sparse coding and dictionary updating as the
input signals arrive sequentially. We rewrite the objective function in (5) as:

min
D,G,W,Z

Nu∑
i=1

{
α||xu

i −Dzui ||22
}
+

Nl∑
i=1

{
β||xl

i −Dzli||22 + γ||qi −Gzli||22 + ||hi −Wzli||22
}
,

s.t.∀i, ||zi||0 ≤ ε (6)

where Nu and Nl are the number of unlabeled and labeled training samples
respectively.

Initialization We assume that, initially, we have a small labeled data set span-
ning all classes. To meet the requirement that each dictionary item is associated
with a class label, we learn multiple class-specific dictionaries separately using
K-SVD and then combine their dictionary items together. For simplicity we
allocate equal number of dictionary items to each class, and the class labels
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attached to the dictionary items remain the same no matter how we update
them throughout the training process. The initialization process is completely
supervised.

Algorithm 1: Dictionary Update
Input: current dictionary Dt−1;

At =
∑t

i=1 ziz
T
i = [a1...at],

Bt =
∑t

i=1 xiz
T
i = [b1...bt];

Output: updated dictionary Dt.
repeat

for j = 1, 2, ...., K do
Update the j-th column

uj ← 1
Aj,j

(bj −Daj) + dj .

dj ← 1
max ||uj ||2,1

uj .

end for
until convergence
Return

Online sparse coding At time t, given that the dictionary D, the label-
consistency transformation matrix G, and the label matrix H are all fixed, the
task is to find the sparse code zt for the signal xt.

– For unlabeled xt, the sparse coding problem simply takes this standard form:
zt = argminz∈RK ||xt−Dz||22, s.t.||z||0 ≤ ε. The orthogonal matching pursuit
(OMP) algorithm is adopted here for its efficiency.

– For labeled xt, first construct the label-consistency vector qt and label vector
ht. The sparse coding problem becomes:

zt = arg min
z∈RK

β||xt −Dz||22 + γ||qt −Gz||22 + ||ht −Wz||22, s.t.||z||0 ≤ ε, (7)

which can be rewritten as,

zt =arg min
z∈RK

∥∥∥∥∥∥
√

βxt√
γqt

ht

−

√
βD√
γG
W

 z

∥∥∥∥∥∥
2

2

= arg min
z∈RK

||x̃t − D̃z||22, (8)

With definition of augmented input signal x̃t = [
√
βxT

t ,
√
γqT

t ,h
T
t ]

t and

augmented dictionary D̃ = [
√
βDT ,

√
γGT ,WT ]T , the sparse code of the

labeled zt can be solved by OMP as for the unlabeled case.

Dictionary update Once the sparse code for xi is obtained, we perform the dic-
tionary update motivated by [13]. First, the coefficient matrix Bt =

∑t
i=1 xiz

T
i ,

which carry all the information from the past sparse codes z1, ..., zt, is aug-
mented to B̃ as the xi’s are augmented to x̃i = [

√
βxT

i ,
√
γqT

i ,h
T
i ]

T . Note that

B̃ is iteratively updated by both labeled data and unlabeled data. In the latter
case, only the first n rows which correspond to xi’s are updated. In essence,
the first n rows in B̃ record the past information of all training data, and the
remaining K +m rows (the dimension of qi plus hi) reflect only the history of
the labeled data. Second, the dictionary is updated either by itself or with G
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and W jointly in the augmented D̃, depending on whether the signal is labeled
or not in that iteration. Given sparse codes zi, i = 1...t, the updated dictionary
using algorithm 1 is the solution to (4) stated in section 2.

Note that algorithm 1 can also be applied to solve (4) with the augmented
dictionary simply by replacing xi with the augmented x̃i = [

√
βxT

i ,
√
γqT

i ,h
T
i ]

T .

3.3 Learning From Unlabeled Data

So far we have discussed our online dictionary learning strategy with a mixture
of labeled and unlabeled training samples. In practice, it still remains unclear
how to choose which input data to label. After labeling the first few samples
for the initial dictionary learning, we wish to keep the manual labeling effort
minimum without sacrificing discriminative capability. In this section we propose
a selection criterion based on a probabilistic model from the signal’s sparse code.

Consider the sparse representation z = [z1...zK ]T of an input signal x. Since
once a dictionary element has its class determined, that can never change, the
sparse coefficients zj associated with item dj can be used to compute the prob-
ability of signal x being in the same class as dictionary item dj . If we sum up
the absolute sparse codes associated with dictionary items from the same class
and normalize them, we obtain the class probability distribution of the signal.
Concretely, suppose we have an m-class classification problem, where each class
is represented by k dictionary items, k × m = K. The class probability of an
input signal x with z = [z1...zK ]T being in class l, given D, is computed as:

pl(x) = Pr(L(x) = l|D) =

∑
j:L(dj)=l |zj |∑

j |zj |
, (9)

where L maps a data point or a dictionary item to a specific class label l ∈
{1...m}. The class probability distribution P (x) for signal x is calculated by
P (x) = [p1(x)...pm(x)]T .

The probability distribution informs us how well the dictionary discriminates
the input signal. To quantify the confidence level of the discriminability of an
input signal, we compute the entropy of its sparse code:

ent(x) = −
m∑
l=1

pl(x) log pl(x). (10)

Intuitively if the dictionary is highly discriminative to an input signal, we
expect the large values of the sparse code to concentrate at certain dictionary
items, and thus the class distribution should be peaked at the most likely class.
Quantitatively, we set two thresholds on the entropy of the probability distri-
bution. Any entropy value smaller than a lower bound indicates a ‘good’ input
signal with respect to the current dictionary, and we are fairly confident about
our maximum likelihood class label prediction of this signal. Such points can
thus be automatically added to the labeled set for dictionary learning with no
human cost.

An entropy value higher than an upper bound tells us one of two things: it
could be a difficult or uncertain input signal, or the current dictionary cannot
represent Here it well. These points are critical to the dictionary learning because
this highly uncertain point might be located near the decision boundary in the
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feature space, or might be new data unlike any we have seen before. In both
situations, manual labeling will have its greatest impact.

Parameter Selection The values of parameter ϕlow and ϕhigh are chosen em-
pirically. Here we use the sparse codes of the training data using the initial
dictionary to approximate the class distributions of the training data, and then
generate a distribution of the entropy values as a basis to determine the values
of the thresholds. ϕhigh can be roughly estimated according to the budget of the
manual labeling, while the best ϕlow can be determined by five-fold cross vali-
dation on the training set. α,β,and γ are also determined via cross validation.

To summarize the discussions above, we propose the following semi-supervised
learning strategy. The initial dictionary is learned under full supervision. As
the unlabeled training data sequentially arrives, we compute the probability
distribution of the sparse codes given the current dictionary, and evaluate the
confidence level of the data. If the entropy value is lower than the lower bound,
then we automatically label the point as the dominating class, and treat it as
labeled data. If, in rare cases, the entropy value exceeds our upper threshold the
user will be requested to label it. For those falling in between, we leave them as
unlabeled data.

Algorithm 2 presents the pseudocode of our approach. The normalization
step at the end of the dictionary update for the labeled data completes the
iteration. Note that the columns of D, G and W are L2-normalized in D̃ jointly,

i.e., ∀j, ∥
[
dTj , g

T
j , w

T
j

]T ∥2 = 1. The desired dictionary D̂, the transformation

matrix Ĝ, and the classifier Ŵ can be computed as [5]:

D̂ =

[
d1

||d1||2
...

dK
||dK ||2

]
; Ĝ =

[
g1

||d1||2
...

gK
||dK ||2

]
; Ŵ =

[
w1

||d1||2
...

wK

||dK ||2

]
; (11)

3.4 Classification Approach

Once we obtain the discriminative D̂, Ĝ and Ŵ from Algorithm 2, we need to
recompute the sparse codes Zl of the labeled data Xl to re-estimate Ŵ , which
includes the original labeled data, the automatically labeled data, and the manu-
ally labeled data. Given Zl, the classifier Ŵ is estimated by using the multivariate
ridge regression model with quadratic loss and L2 norm regularization:

argmin
W

∥H −WZl∥22 + λ∥W∥22, (12)

which yields the analytic solution: Ŵ = HZT (ZZT + λI)−1. When a testing
point xtest comes in, we first compute its sparse code ztest, and then compute
Ŵztest. The label for xj is assigned by the position corresponding to the largest

value in the label vector: χ = Ŵztest, where χ ∈ Rm.

4 Experiments

We evaluate our approach on three popular datasets: Extended YaleB database [25],
Caltech101 [26], and Caltech256 [27]. We compare our results with two compet-
ing supervised dictionary learning algorithms: D-KSVD [8],LC-KSVD [9], as well
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Algorithm 2: Online Semi-Supervised Dictionary Learning (Online SSDL)

Input: input signals X = {x1...xN} and their labels, if any; regularization
constant α, β and γ; lower bound ϕlow and upper bound ϕhigh

Output: D, G, and W .
Initialization: Compute D0, G0, and W0 via LC-KSVD

A0 ← 0; B̃0 ← 0
for t = 1, 2, ...., N do

Draw xt from the sequence;
Sparse coding: compute sparse code zt using (1);
if xt is unlabeled,

Compute the entropy ent(xt) using (10);
if ent(xt) ≤ ϕhigh and ent(x) ≥ ϕlow;
% dictionary update with unlabeled data

At ← At−1 + αztz
T
t ;

Bt ← B̃t−1(1 : n, :);Bt ← Bt + αxtz
T
t ;

Dictionary update by unlabeled data:
update Dt using algorithm 1 with Dt−1, At, and Bt;

continue;
elseif ent(xt) < ϕlow

% automatical labeling on the confident point
L(xt) = argmaxj pj(x);

else ent(xt) > ϕhigh

% manual labeling on the difficult point
L(xt) = l;

endif
endif
% dictionary update with labeled data
Construct x̃t = [

√
βxT

t ;
√
γqT

t ;hT
t ]T , and D̃t−1 = [

√
βDT

t−1;
√
γGT

t−1;W
T
t−1]

T ;

At ← At−1 + ztz
T
t ; B̃t ← B̃t−1 + x̃tz

T
t ;

Dictionary update by labeled data:
update D̃t using algorithm 1 with D̃t−1, At, and B̃t;

obtain D, G and W from D̃t and normalize them by (11).
end for
Return D, G, and W .

as three online dictionary learning algorithms including Online Dictionary Learn-
ing for Sparse Coding (ODLSC) [13], Incremental Dictionary Learning (IDL) [14]
and Large Scale Dictionary Learning (LSDL) [17], and some other benchmark
algorithms such as K-SVD [11].

Since the number of labeled samples varies with our selection of ϕlow and
ϕhigh and the classification accuracy depends on the number of labeled training
samples, it is tricky to do a fair comparison with other methods unless we fix our
settings. To address this issue, we conducted the experiments in two folds: (1)
Split the training set into labeled set and unlabeled set. We want to demonstrate
the effect of the number of labeled samples on our performance in comparison
with others. While our method takes advantage of both sets due to our learning
strategy, the competing methods can only take the labeled set for training since
the unlabeled samples are useless to them. (2) To compare our best recognition
rate with the state-of-the-arts, we assumed all the training samples are labeled.
We’d like to point out two facts: (a) our method adopts a simple classifier jointly
learned with the dictionary, whereas other methods take advantage of sophisti-
cated classifiers such as SVM; (2) although the advantage is not too obvious in
terms of recognition rate in case of which all the training samples are labeled,
the benefit of our method can be signified when the labeled samples are few,
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Table 1. Recognition results using random face features on the Extended YaleB. We obtained the
accuracies of LSDL, OSCDL, and IDL by running the codes, while the accuracies of the other
methods are copied from the references.

Method K-SVD [11] D-KSVD [5] SRC [3] LLC [14] LC-KSVD [9]
Acc. 93.1 94.1 80.5 82.2 94.5

Method LSDL [17] ODLSC [13] IDL [14] Online SSDL
Acc. 90.5 91.4 89.6 94.7

which is demonstrated at the starting points of all curves (see Fig. 2(a), 3(a),
and 3(b)).

4.1 Extended YaleB Database

The extended YaleB database [25] contains 2, 414 images of 38 human frontal
faces under about 64 illumination conditions and expressions. The images were
chopped to 192× 168 pixels. Each face was projected to a 504-dimensional ran-
dom space by multiplying a random matrix introduced in [3, 5]. The entries of
the matrix follow a zero-mean Gaussian distribution. We randomly selected 32
faces per person as training data, and the rest 32 are for testing. We report the
results from the average of ten such random splits of the training and testing
images.

To make the initial dictionary discriminative, we trained 38 dictionaries of
six items for each person with eight samples using K-SVD, and combine them
as our initial dictionary of 228 items. The remaining 24 × 38 training samples
are randomly permutated as sequential input signals to our online algorithm.
The dictionary size and the item labels are fixed during the learning process. We
conducted two experiments on this dataset for the purpose discussed previously.

Experiment 1 We compare our approach with two supervised methods: LC-
KSVD and D-KSVD. We fixed ϕlow = 4.5 for automatic labeling, and incremen-
tally tune ϕhigh, each value corresponding to a set of selected samples for manual
labeling. The same number of manually labeled samples are used as training set
for D-KSVD and LC-KSVD. Figure 2(a) shows that the recognition rate goes
up as the number of labeled samples increases as expected. Our approach takes
all the training samples regardless of whether they are labeled or unlabeled, and
thus achieves a higher recognition rate even with few manually labeled data (the
left end of the curve).

To demonstrate the impact of the lower threshold, we present another set of
curves in Figure 2(b). Each curve corresponds to recognition rate growing with
the number of manually labeled samples for a given value of the lower threshold.
All curves are obtained with the same set of parameters (α, β and γ) and the
same set of higher thresholds.

From the curves we clearly see that a higher ϕlow, i.e. more automatic labels,
is most beneficial to the case when manual labels are scarce (the left end of
the curves). When the number of manual labels increase, the recognition rates
with different lower thresholds tend to converge. In addition, the curve with
ϕlow = 4.5 in Figure 2(b) is different from the curve in Figure 2(a) due to
different parameter settings.
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Fig. 2. Recognition performance on the Extended YaleB. (a) Recognition performance with varying
number of labeled samples, where K = 6 × 38 and N = 24× 38; (b) An illustration of the effect of
the lower bound. The curves are obtained with the same set of parameters: α, β, γ and the same set
of higher entropy thresholds.

Table 2. Recognition results using spatial pyramid features on the Caltech101. The accuracies of
the other results are copied from the references.

Training Images 5 10 15 20 25 30

Malik [28] 46.6 55.8 59.1 62.0 - 66.20
Lazebnik [29] - - 56.4 - - 64.6
Griffin [27] 44.2 54.5 59.0 63.3 65.8 67.60
Irani [30] - - 65.0 - - 70.40

Grauman [31] - - 61.0 - - 69.10
Venkatesh [6] - - 42.0 - - -
Gemert [32] - - - - - 64.16
Yang [2] - - 67.0 - - 73.20
Wang [14] 51.15 59.77 65.43 67.74 70.16 73.44
SRC [3] 48.8 60.1 64.9 67.7 69.2 70.7

K-SVD [11] 49.8 59.8 65.2 68.7 71.0 73.2
D-KSVD [5] 49.6 59.5 65.1 68.6 71.1 73.0
IDL [14] 51.2 61.5 65.7 68.4 71.6 -
LSDL [17] 52.8 61.5 65.7 68.4 71.5 -
ODLSC [13] 52.8 61.5 65.6 68.5 71.3 72.4
LC-KSVD [9] 54.0 63.1 67.7 70.5 72.3 73.6
Online SSDL 55.0 62.6 67.2 69.6 72.4 74.3

Experiment 2 In the second experiment, we compare with other online dictio-
nary learning approaches: ODLSC [13], IDL [14] and LSDL [17], and some state-
of-art dictionary learning approaches [11, 5, 3, 14, 9]. Here we set ϕlow = ϕhigh =
0, i.e. we get an online dictionary learning algorithm in which all new samples
are labeled, as opposed to supervised algorithm in batch mode (LC-KSVD) and
unsupervised online algorithms such as ODLSC, IDL, LSDL. As shown in Table
1, our approach (referred to as Online SSDL) has the best performance.

4.2 Caltech101 Dataset

The Caltech101 dataset [26] contains 9, 144 images of 102 categories (101 cate-
gories of objects and a ‘background’ category). There are about 40 to 800 images
per category. All images are resized to be smaller than 300× 300 pixels. We ex-
tract sift descriptor with 128 dimension from 16×16 patches. Then we extract the
spatial pyramid features with three grids of size 1×1, 2×2 and 4×4, and reduce
them to 3, 000 dimensions by PCA. Similarly, we conducted two experiments:
one is the recognition versus the number of manual labels (seen in Figure 3(a)),
and the other is a comparison with the state-of-art methods, using 5, 10, 15,
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Fig. 3. Recognition rate on Caltech101 and Caltech256 with varying number of labeled samples. (a)
Caltech101 with K = 10×102 and N = 20×102; (b) Caltech256 with K = 3×256 and N = 50×102;.

20, 25 and 30 training samples per category. The results are summarized in Ta-
ble 4.1. The training samples are randomly selected from each category, and
the remaining images are used for testing. We repeated this sampling process to
get ten splits and report their average. Following the experimental settings for
other methods, we trained dictionaries of the same size as the training samples,
i.e., K = 510, 1020, 1530, 2040, 2550, 3060. Again, by setting ϕlow = ϕhigh = 0,
we essentially label all the training data, and this yields the best performance
compared to the competition. As shown in Table 4.1, our approach is compa-
rable to LC-KSVD but outperforms the other methods because we take the
discriminative error into account.

4.3 Caltech256 Dataset

The Caltech256 dataset [27] contains 30, 607 images of 256 categories. There are
at least 80 images per category. Compared to Caltech101 dataset, it is much more
difficult due to the variability in object location, pose and size, etc. In contrast
to Caltech101, here we extract HOG descriptors from each patch at three scales,
16× 16, 25× 25 and 31× 31. The dimension of each HOG descriptor is 128. We
extracted the spatial pyramid features using 4× 4, 2× 2 and 1× 1 sub-regions.
Finally we reduce the dimension of the features to 305 using PCA. We used 15,
30, 45 and 60 training samples per class for dictionary learning. Again, training
images are randomly selected from each category and all are manually labeled.
But unlike the common setup, where the dictionary size equals the number of
training samples, we trained dictionaries that contains only 3 items per class.
Also, consistent with our previous experiments, we used low-dimensional features
and a simple linear classifier instead of sophisticated features and discriminative
classifiers such as SVMs. As shown in Table 4.3, our approach achieves good
performance even with a simple classifier and significantly smaller dictionary
sizes. Note that the accuracies in the first three rows (group 1) are copied from
the references, and the rest (group 2) are obtained from our implementation.
The differences in experimental settings might account for the average drop in
performance of group 2. The recognition performances with varying number of
labeled samples perclass are presented in Figure 3(b). The advantage of our
method is shown especially when the manual labels are few.
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Table 3. Recognition results using spatial pyramid features on the Caltech256. The accuracies in the
first three rows are copied from the references, and the rest are obtained from our implementations.
In our own implementation, dictionary size is fixed to be 3×256 = 768)

Training Images 15 30 45 60

Griffin [27] 28.30 34.10 - -
Gemert [32] - 27.17 - -
Yang [2] 27.73 34.02 37.46 40.14
IDL [14] 19.9 21.7 23.9 26.3
LSDL [17] 23.3 25.6 28.4 30.5
ODLSC [13] 19.3 21.3 23.6 26.1
LC-KSVD [9] 24.6 28.6 30.3 34.9
Online SSDL 27.9 31.9 34.4 36.7

5 Conclusion

We proposed an online semi-supervised dictionary learning approach for clas-
sification. It’s particularly suitable for large scale datasets where batch mode
doesn’t work well. Moreover, by using a probabilistic model of the sparse codes,
our algorithm actively seeks for the critical points for labeling, and identifies the
easily classified points as labeled data. In this way we reduce the manual labeling
effort to the minimum without sacrificing the performance too much. The fact
that the dictionary and the classifier are jointly learned further enhances the
discriminative power. Experimental results showed that our approach achieves
state-of-art performance. Possible future work includes updating the learned dis-
criminative dictionary for input signals from a new category.
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