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Abstract
In real-world action recognition problems, low-level features cannot adequately
characterize the rich spatial-temporal structures in action videos. In this work,
we encode actions based on attributes that describes actions as high-level con-
cepts e.g., jump forward or motion in the air. We base our analysis on two types
of action attributes. One type of action attributes is generated by humans. The
second type is data-driven attributes, which are learned from data using dictio-
nary learning methods. Attribute-based representation may exhibit high variance
due to noisy and redundant attributes. We propose a discriminative and compact
attribute-based representation by selecting a subset of discriminative attributes
from a large attribute set. Three attribute selection criteria are proposed and for-
mulated as a submodular optimization problem. A greedy optimization algorithm
is presented and guaranteed to be at least (1-1/e)-approximation to the optimum.
Experimental results on the Olympic Sports and UCF101 datasets demonstrate
that the proposed attribute-based representation can significantly boost the perfor-
mance of action recognition algorithms and outperform most recently proposed
recognition approaches.

1 Introduction
Action recognition in real-world videos has many potential applications in multimedia retrieval,
video surveillance and human computer interaction. In order to accurately recognize human ac-
tions from videos, most existing approaches developed various discriminative low-level features,
including spatio-temporal interest point (STIP) based features [8, 15], shape and optical flow-based
features [19, 5], and trajectory-based representations [28, 33]. Because of large variations in view-
points, complicated backgrounds, and people performing the actions differently, videos of an action
vary greatly. A result of this variability is that conventional low-level features are not able to char-
acterize the rich spatio-temporal structures in real-world action videos. Inspired by recent progress
on object recognition [6, 14], multiple high-level semantic concepts called action attributes were
introduced in [20, 17] to describe the spatio-temporal evolution of the action, object shapes and hu-
man poses, and contextual scenes. Since these action attributes are relatively robust to changes in
viewpoints and scenes, they bridge the gap between low-level features and class labels. In this work,
we focus on improving action recognition performance of attribute-based representations.

Even though attribute-based representation appear effective for action recognition, they require hu-
mans to generate a list of attributes that may adequately describe a set of actions. From this list,
humans then need to assign the action attributes to each class. Previous approaches [20, 17] simply
used all the given attributes and ignored the difference in discriminative capability among attributes.
This caused two major problems. First, a set of human-labeled attributes may be not be able to
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(a) ApplyEyeMakeup (b) ApplyLipStick

Indoor           =Yes 

One_hand_visible =Yes 

Stick_like            =Yes 

Sharp_like       =Yes  

One_arm_bent      =Yes 

Facing_front      =Yes 

 

(c) Attribute set

Figure 1: Key frames from two actions “ApplyEyeMakeup” and “ApplyLipStick” and the associated
attribute set that the two actions share.

represent and distinguish a set of action classes. This is because humans subjectively annotate ac-
tion videos with arbitrary attributes. For example, consider the two classes “ApplyEyeMakeup” and
“ApplyLipStick” in UCF101 action dataset [30] shown in Figure 1. They have the same human-
labeled attribute set and cannot be distinguished from one another. Second, some manually labeled
attributes may be noisy or redundant which leads to degradation in action recognition performance.
In addition, their inclusion also increases the feature extraction time. Thus, it would be beneficial to
use a smaller subset of attributes while achieving comparable or even improved performance.

To overcome the first problem, we propose another type of attributes that we call data-driven at-
tributes. We show that data data-driven attributes are complementary to human-labeled attributes.
Instead of using clustering-based algorithms to discover data-driven attributes as in [20], we pro-
pose a dictionary-based sparse representation method to discover a large data-driven attribute set.
Our learned attributes are more suited to represent all the input data points because our method
avoids the problem of hard assignment of data points to clusters. To address the attribute selec-
tion problem, we propose to select a compact and discriminative set of attributes from a large set
of attributes. Three attribute selection criteria are proposed and then combined to form a submod-
ular objective function. Our method encourages the selected attributes to have strong and similar
discrimination capability for all pairs of actions. Furthermore, our method maximizes the sum of
maximum coverage that each pairwise class can obtain from the selected attributes.

2 Related Work
Attribute-based representation for action recognition: Recently, several attribute-based represen-
tations have been proposed for improving action recognition performance. Liu et al. [20] modeled
attributes as latent variables and searched for the best configuration of attributes for each action
using latent SVMs. However, the performance may drop drastically when some attributes are too
noisy or redundant. This is because pretrained attribute classifiers from these noisy attributes per-
form poorly. Li et al. [17] decomposed a video sequence into short-term segments and characterized
segments by the dynamics of their attributes. However, since attributes are defined over the entire
action video instead of short-term segments, different decomposition of video segments may obtain
different attribute dynamics.

Another line of work similar to attribute-based methods is based on learning different types of mid-
level representations. These mid-level representations usually identify the occurrence of semantic
concepts of interest, such as scene types, actions and objects. Fathi et al. [7] proposed to construct
mid-level motion features from low-level optical flow features using AdaBoost. Wang et al. [35]
modeled a human action as a global root template and a constellation of several parts. Raptis et
al. [27] used trajectory clusters as candidates for the parts of an action and assembled these clusters
into an action class by graphical modeling. Jain et al. [10] presented a new mid-level representation
for videos based on discriminative spatio-temporal patches, which are automatically mined from
videos using an exemplar-based clustering approach.

Submodularity: Submodular functions are a class of set functions that have the the property
of diminishing returns [24]. Given a set E, a set function F : 2E → R is submodular if
F (A ∪ v) − F (A) ≥ f(B ∪ v) − F (B) holds for all A ⊆ B ⊆ E and v ∈ E \ B. The di-
minishing returns mean that the marginal value of the element v decreases if used in a later stage.
Recently, submodular functions have been widely exploited in various applications, such as sensor
placements [13], superpixel segmentation [22], document summarization [18], and feature selec-
tion [3, 23]. Liu et al. [23] presented a submodular feature selection method for acoustic score
spaces based on existing facility location and saturated coverage functions. Krause et al. [12] de-
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veloped a submodular method for selecting dictionary columns from multiple candidates for sparse
representation. Iyer et al. [9] designed a new framework for both unconstrained and constrained
submodular function optimization. Streeter et al. [31] proposed an online algorithm for maximizing
submodular functions. Different from these approaches, we define a novel submodular objective
function for attribute selection. Although we only evaluate our approach for action recognition, it
can be applied to other recognition tasks that use attribute descriptions.

3 Submodular Attribute Selection
In this section, we first propose three attribute selection criteria. In order to satisfy these criteria,
we define a submodular function based on entropy rate of a random walk and a weighted maximum
coverage function. Then we introduce algorithms for the detection of human-labeled attributes and
extraction of data-driven attributes.

3.1 Attribute Selection Criteria
Assume that we have C classes and a large attribute set P = {a1, a2, .., aM} which con-
tains M attributes. The set that includes all combinations of pairwise classes is represented by
U = {u1(1, 1), u2(1, 2), ..., ul(i, j), ..., uL(C − 1, C)} where ul(i, j), i < j denotes the pairwise
combination of classes i and j, l is the index of this combination in U , and L = C × (C − 1)/2
is the total number of all possible pairwise classes. Here we propose to use the Fisher score to
construct an attribute contribution matrix A ∈ RM×L, where an entry Ad,l represents the dis-
crimination capability of attribute ad for differentiating the class pair (i, j) indexed by ul(i, j).
Specifically, given the attribute ad and class pair (i, j), let µdk and σdk be the mean and standard
deviation of k-th class and µd be the mean of samples from both classes i and j corresponding to
d-th attribute. The Fisher score of attribute ad for differentiating the class pair (i, j) is computed

as follows: Ad,l(i,j) =
∑

k=i,j nk(µ
d
k−µ

d)2∑
k=i,j nkσ2

k
where l is the index of pairwise classes (i, j) in U , and

nk is the number of points from class k. Note that different methods can be used to measure the
discrimination capability of ad, such as mutual information and T-test.

Given A, we can obtain a row vector r by summing up its elements from each column that are in
rows corresponding to selected attributes S. An example of vector r is shown in Figure 2a. We
would like to have r satisfy two selection criteria: (1) each entry of r should be as large as possible;
and (2) the variance of all entries of r should be small. The first criterion encourages S to provide as
much discrimination capability as possible for each pairwise classes. The second criterion makes S
have similar discrimination capability for each pairwise classes. These two criteria can be satisfied
by maximizing the entropy rate of a random walk on the proposed graphs. Meanwhile, since some
attributes may well differentiate the same collection of pairwise classes, it would be redundant to
select all these attributes. In other words, one combination of pairwise classes may be repeatedly
“covered” (differentiated) by multiple attributes. It is better to select other attributes which can dif-
ferentiate “uncovered” combinations of pairwise classes. Therefore, we propose the third criterion:
the sum of maximum discrimination capability that each pairwise classes can obtain from the se-
lected attributes should be maximized. We will model it as a weighted maximum coverage problem
and encourage S to have a maximum coverage of all pairwise classes.

3.2 Entropy Rate-based Attribute Selection
In order to achieve the first two criteria, we need to construct an undirected graph and maximize the
entropy rate of a random walk on this graph. We aim to obtain a subset S so that the attribute-based
representation has good discrimination power.

Graph Construction: We use G = (V,E) to denote an undirected graph where V is the vertex
set, and E is the edge set. The vertex vi represents class i and the edge ei,j connecting class i
and j represents that class i and j can be differentiated by the selected attribute subset S to some
extent. The edge weight for ei,j is defined aswi,j =

∑
d∈S Ad,l, which represents the discrimination

capability of S for differentiating class i from class j. The edge weights are symmetric, i.e. wi,j =
wj,i. In addition, we add a self-loop ei,i for each vertex vi of G. And the weight for self-loop ei,i
is defined as wi,i =

∑
d∈P\S Ad,l. The total incident weight for each vertex is kept constant so

that it produces a stationary distribution for the later proposed random walk on this graph. Note that
the addition of these self-loops do not affect the selection of attributes and the graph will change
with the selected subset S. Figure 2 gives an example to illustrate the benefits of the entropy rate.
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Subsetc1/c2 c1/c3 c1/c4 c2/c3 c2/c4 c3/c4
S1 1 1 1 1 1 1
S2 2 2 2 2 2 2
S3 2 1 3 3 1 2

(a) Vector r corresponding to different subsets.

1 2 

4 3 

1 

1 1 

1 

1 1 

(b) S1

1 2 

4 3 

2 

2 2 2 2 

2 

(c) S2

1 2 

4 3 

2 

3 3 1 1 

2 

(d) S3

Figure 2: The summations of different rows in the contribution matrix corresponding to three different
selected subsets are provided in the left table and the corresponding undirected graphs are in the right
figure. We show the role of the entropy rate in selecting attributes which have large and similar discrimination
capability for each pair of classes. The circles with numbers denote the corresponding class vertices and the
numbers next to the edge denote the edge weights, which is a measure of the discrimination capability of
selected attribute subset. The self-loops are not displayed. The entropy rate of the graph with large edge
weights in (c) has a higher objective value than that of a graph with smaller edge weights in (b). The entropy
rate of graph with equal edge weights in (c) has a higher objective value than that of the graph with different
edge weights in (d).

Entropy Rate: Let X = {Xt|t ∈ T,Xt ∈ V } be a random walk on the graph G = (V,E) with
nonnegative discrimination measure w. We use the random walk model from [2] with a transition
probability defined as below:

pi,j(S) =
{ wi,j

wi
=

∑
d∈S Ad,l

wi
if i 6= j

1−
∑

k:k 6=i wi,k

wi
=

∑
d∈P\S Ad,l

wi
if i = j

(1)

where S is the selected attribute subset and wi =
∑
m:ei,m∈E wi,m is the sum of incident weights

of the vertex vi including the self-loop. The stationary distribution for this random walk is given by
µ = (µ1, µ2, ..., µC)

T = (w1

w0
, w2

w0
, ..., wC

w0
) where w0 =

∑C
i=1 wi is the sum of the total weights

incident on all vertices. For a stationary 1st-order Markov chain, the entropy rate which measures the
uncertainty of the stochastic processX is given by: H(X) = limt→∞H(Xt|Xt−1, Xt−2, ..., X1) =
limt→∞H(Xt|Xt−1) = H(X2|X1). More details can be found in [2]. Consequently, the entropy
rate of the random walk X on our proposed graph G = (V,E) can be written as a set function:

H(S) =
∑
i

uiH(X2|X1 = vi) = −
∑
i

ui
∑
j

pi,j(S)log(pi,j(S)) (2)

Intuitively, the maximization of the entropy rate will have two properties. First, it encourages the
maximization of pi,j(S) where i = 1, ..., C and i 6= j. This can make edge weights wi,j , i 6= j as
large as possible, so class i can be easily differentiated from other classes j (i.e., satisfying the first
criteria). Second, it makes all class vertices have transition probabilities similar to other connected
class vertices, so the discrimination capabilities of class i from other classes are very similar (i.e.,
satisfying the second criteria). Maximizing the entropy rate of the random walk on the proposed
graph can select a subset of attributes that are compact and discriminative for differentiating all
pairwise classes.
Proposition 3.1. The entropy rate of the random walkH : 2M → R is a submodular function under
the proposed graph construction.

The observation that adding an attribute in a later stage has a lower increase in the uncertainty
establishes the submodularity of the entropy rate. This is because at a later stage, the increased edge
weights from the added attribute will be shared with attributes which contribute to the differentiation
of the same pair of classes. A detailed proof based on [22] is given in the supplementary section.

3.3 Weighted Maximum Coverage-based Attribute Selection
We consider a weighted maximum coverage function to achieve the last criteria that the selected
subset S should maximize the coverage of all combinations of pairwise classes. For each attribute
ad, we define a coverage set Ud ⊆ U which covers all the combinations of pairwise classes that
attribute ad can differentiate. Meanwhile, for each element (combination) ul ∈ U that is covered by
Ud, we define a coverage weight w(Ud, ul) = Ad,l. Given the universe set U and these coverage sets
Ud, d = 1, ...,M , the weighted maximum coverage problem is to select at most K coverage sets,
such that the sum of maximum coverage weight each element can obtain from S is maximized. The
weighted maximum coverage function is defined as follows:

Q(S) =
∑
ul∈U

max
d∈S

w(Ud, ul) =
∑
ul∈U

max
d∈S

Ad,l, s.t.NS ≤ K (3)

4



Attrs.c1/c2c1/c3c1/c4c2/c3c2/c4c3/c4
a1 2 2 0 1 1 0
a2 1 1 0 0 0 0
a3 0 0 1 0 0 2
a4 0 0 0 2 2 0

(a) Attribute contribution matrix A.

a1 a2 a3

1/2 1/3 1/4 2/3 2/4 3/4

1 1
2

2 1 1
1

2
2 2

a4

(b) Coverage graph

Figure 3: An example of attribute contribution matrix is given in the left table and the corresponding
coverage graph is in the right figure. We show the role of weighted maximum coverage term in selecting
attributes which have large coverage weights. Two numbers separated by a backslash in the top circles denote
a pair of classes, while the bottom circles denote different attributes. The number next to one edge is the
coverage weight associated with the class pair when covered by the corresponding attribute. The edge which
provides maximum coverage weight for each class pair is in red color. We consider three attribute subsets
S1 = {a1, a2},S2 = {a1, a3},S3 = {a1, a4}. S2 has a higher objective value than S1 and S3 because the
sum of maximum coverage weights for all class pairs obtained using attributes from subset S2 is largest.

where NS is the number of attributes in S. Note that the weighted maximum coverage problem is
reduced to the well studied set-cover problem when all the coverage weights are equal to be ones.
Proposition 3.2. The weighted maximum coverage function Q : 2M → R is a monotonically
increasing submodular function under the proposed set representation.

For the weighted maximum coverage term, monotonicity is obvious because the addition of any
attribute will increase the number of covered elements in U . Submodularity results from the obser-
vation that the coverage weights of increased covered elements will be less from adding an attribute
in a later stage because some elements may be already covered by previously selected attributes.
The proof is given in the supplementary section.

3.4 Objective Function and Optimization
Combing the entropy rate term and the weighted maximum coverage term, the overall objective
function for attribute selection is formulated as follows:

maxF(S) = max
S
H(S) + λQ(S) s.t.NS ≤ K (4)

where λ controls the relative contribution between entropy rate and the weighted maximum coverage
term. The objective function is submodular because linear combination of two submodular functions
with nonnegative coefficients preserves submodularity [24]. Direct maximization of a submodular

Algorithm 1 Submodular Attribute Selection

1: Input: G = (V,E), A and λ
2: Output: S
3: Initialization: S ← ∅
4: for NS < K and F (S ∪ a)− F (S) ≥ 0 do
5: am = argmaxS∪amF(S ∪ {am})−F(S)
6: S ← am
7: end for

function is an NP-hard problem. However, a greedy algorithm from [24] gives a near-optimal so-
lution with a (1 − 1/e)-approximation bound. The greedy algorithm starts from an empty attribute
set S = ∅ ; and iteratively adds one attribute that provides the largest gain for F at each iteration.
The iteration stops when the maximum number of selected attributes is obtained or F(S) decreases.
Algorithm 1 presents the pseudo code of our algorithm. A naive implementation of this algorithm
has the complexity of O(|M |2), because it needs to loop O(|M |) times to add a new attribute and
scan through the whole attribute list in each loop. By exploiting the submodularity of the objective
function, we use the lazy greedy approach presented in [16] to speed up the optimization process.

3.5 Human-labeled Attribute and Data-driven Attribute Extraction
Action videos can be characterized by a collection of human-labeled attributes [20]. For example,
the action “long-jump” in Olympic Sports Dataset [25] is associated with either the motion attributes
(jump forward, motion in the air), or with the scene attributes (e.g., outdoor, track). Given an action
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video x, an attribute classifier fa : x → {0, 1} predicts the confidence score of the presence of
attribute a in the video. This classifier fa is learned using the training samples of all action classes
which have this attribute as positive and the rest as negative. Given a set of attribute classifiers S =
{fai(x)}mi=1, an action video x ∈ Rd is mapped to the semantic space O: h : Rd → O = [0, 1]m

where h(x) = (h1(x), ..., hm(x))T is a m-dimensional attribute score vector.

Previous works [21, 20] on data-driven attribute discovery used k-means or information theoretic
clustering algorithms to obtain the clusters as the learned attributes. In this paper, we propose to
discover a large initial set of data-driven attributes using a dictionary learning method. Specifically,
assume that we have a set of N videos in a n-dimensional feature space X = [x1, ..., xN ], xi ∈ Rn,
then a data-driven dictionary is learned by solving the following problem:

argmin
D,Z
||X −DZ||22 s.t. ∀i, ||zi||0 ≤ T (5)

where D = [d1...dK ], di ∈ Rn is the learned attribute dictionary of size K, Z = [zi...zN ], zi ∈ RK
are the sparse codes of X , and T specifies the sparsity that each video has fewer than T items in its
decomposition. Compared to k-means clustering, this dictionary-based learning scheme avoids the
hard assignment of cluster centers to data points. Meanwhile, it doesn’t require the estimation of the
probability density function of clusters in information theoretic clustering. Note that our attribute
selection framework is very general and different initial attribute extraction methods can be used
here.

4 Experiments
In this section, we validate our method for action recognition on two public datasets: Sports
dataset [25] and UCF101 [20] dataset. Specifically, we consider three sets of attributes: human-
labeled attribute set (HLA set), data-driven attribute set (DDA set) and the set mixing both types of
attributes (Mixed set). To demonstrate the effectiveness of our selection framework, we compare
the result using the selected subset with the result based on the initial set.

We also compare our method with other two submodular approaches based on the facility location
function (FL) and saturated coverage function (SC) respectively in [23]. These objective functions
are defined as follows: Ffa(S) =

∑
i∈V maxj∈S wi,j ,Fsa(S) =

∑
i∈V min{Ci(S), αCi(V)}

where wi,j is a similarity between attribute i and j, Ci(S) =
∑
j∈S wi,j measures the degree that

attribute i is “covered” by S and α is a hyperparameter that determines a global saturation threshold.
For the two approaches compared against, we consider an undirected k-nearest neighbor graph and
use a Gaussian kernel to compute pairwise similaritieswi,j = exp(−βd2i,j) where di,j is the distance
between attribute i and j, β = (2〈d2i,j〉)−1 and 〈·〉 denotes expectation over all pairwise distances.

Finally, we compare the performance of attribute-based representation with several state-of-the-art
approaches on the two datasets.

4.1 Olympic Sports Dataset
The Olympic Sports dataset contains 783 YouTube video clips of 16 sports activities. We followed
the protocol in [20] to extract STIP features [4]. Each action video is finally represented by a 2000-
dimensional histogram. We use 40 human-labeled attributes provided by [20]. Three attribute-based
representations are constructed as follows: (1) HLA set: For each human-labeled attribute, we train
a binary SVM with a histogram intersection kernel. We concatenate confidence scores from all
these attribute classifiers into a 40-dimensional vector to represent this video. (2) DDA set: For
data-driven attributes, we learn a dictionary of size 457 from all video features using KSVD [1]
and each video is represented by a 457-dimensional sparse coefficient vector. (3) Mixed set: This
attribute set is obtained by combining HLA set and DDA set.

We compare the performance of features based on selected attributes with those based on the initial
attribute set. For all the different attribute-based features, we use an SVM with Gaussian kernel for
classification. Table 1 shows classification accuracies of different attribute-based representations.
Compared with the initial attribute set, the selected attributes have greatly improved the classifica-
tion accuracy, which demonstrates the effectiveness of our method for selecting a subset of discrim-
inative attributes. Moreover, features based on the Mixed set outperform features based on either
HLA set or DDA set. This shows that data-driven attributes are complementary to human-labeled
attributes and together they offer a better description of actions. Table 2 shows the per-category av-
erage precision (AP) and mean AP of different approaches. It can be seen that our method achieves
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dataset HLA DDA Mixed
All Subset All Subset All Subset

Olympic 61.8 64.1 49.0 53.8 63.1 66.7
UCF101 81.7 83.4 79.0 81.6 82.3 85.2

Table 1: Recognition results of different attribute-based representations. “All” denotes the original at-
tribute sets and “Subset” denote the selected subsets.
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Figure 4: Recognition results by different submodular methods on the Olympic Sports dataset.

Activity [15] [25] [32] [20] [17] HLA DDA Mixed
high-jump 52.4 68.9 18.4 93.2 82.2 80.4 66.4 83.1
long-jump 66.8 74.8 81.8 82.6 92.5 88.8 85.3 93.9
triple-jump 36.1 52.3 16.1 48.3 52.1 61.4 60.7 73.6
pole-vault 47.8 82.0 84.9 74.4 79.4 55.1 45.5 56.8
gym. vault 88.6 86.1 85.7 86.7 83.4 98.2 84.2 98.4
short-put 56.2 62.1 43.3 76.2 70.3 63.7 39.5 72.2

snatch 41.8 69.2 88.6 71.6 72.7 74.5 34.2 79.8
clean-jerk 83.2 84.1 78.2 79.4 85.1 73.8 57.9 82.6

javelin throw 61.1 74.6 79.5 62.1 87.5 36.0 26.4 36.5
hammer throw 65.1 77.5 70.5 65.5 74.0 76.9 77.2 80.4
discuss throw 37.4 58.5 48.9 68.9 57.0 53.9 45.6 56.0
diving-plat. 91.5 87.2 93.7 77.5 86.0 94.8 55.3 99.2

diving-sp. bd. 80.7 77.2 79.3 65.2 78.3 79.7 59.7 90.4
bask. layup 75.8 77.9 85.5 66.7 78.1 88.7 89.7 90.7

bowling 66.7 72.7 64.3 72.0 52.5 43.0 55.3 55.4
tennis-serve 39.6 49.1 49.6 55.2 38.7 78.8 35.3 83.7
mean-AP 62.0 72.1 66.8 71.6 73.2 72.1 57.2 77.0

Table 2: Average precisions for activity recognition on the Olympic Sporst dataset.

the best performance. This illustrates the benefits of selecting discriminative attributes and removing
noisy and redundant attributes. Note that our method outperforms the method that is most similar to
ours [20] which uses complex latent SVMs to combine low-level features, human-labeled attributes
and data-driven attributes. Moreover, compared with other dynamic classifiers [25, 17] which ac-
count for the dynamics of bag-of-features or action attributes, our method still obtains comparable
results. This is because the provided human-labeled attributes are very noisy and they can greatly
affect the training of latent SVM and representation of the attribute dynamics.

Figures 4a 4b 4c show classification accuracies of attribute subsets selected by different submodular
selection methods. It can be seen that our method outperforms the other two submodular selection
methods for the three different attribute sets. This is because our method prefers attributes with large
and similar discrimination capability for differentiating pairwise classes, while the other two meth-
ods prefer attributes with large similarity to other attributes (i.e. representative), without explicitly
considering the discrimination capabilities of selected attributes. Figure 4d shows the performance
curves for a range of λ. We observe that the combination of entropy rate term and maximum cover-
age term obtains a higher classification accuracy than when only one of them is used. In addition,
our approach is insensitive to the selection of λ. Hence we use λ = 0.1 throughout the experiments.

4.2 UCF101 Dataset
UCF101 dataset contains over 10,000 video clips from 101 different human action categories. We
compute the improved version of dense trajectories in [34] and extract three types of descriptors:
histogram of oriented gradients (HOG), histogram of optical flow (HOF) and motion boundary his-
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splits [34] [36] [37] [11] [29] HLA DDA Mixed
1 83.03 83.11 79.41 65.22 63.41 82.45 80.35 84.19
2 84.22 84.60 81.25 65.39 65.37 83.27 82.16 85.51
3 84.80 84.23 82.03 67.24 64.12 84.60 82.42 86.30

Avg 84.02 83.98 80.90 65.95 64.30 83.44 81.64 85.24
Table 3: Recognition results of different approaches on UCF101 dataset.
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Figure 5: Recognition results by different submodular methods on UCF101 dataset.

togram (MBH). We use Fisher vector encoding [26] and obtain 101,376-dimensional histogram to
represent each action video. Three different attribute sets and corresponding attribute-based rep-
resentations are constructed as follows: (1) HLA set: Due to the high dimensionality of features
and large number of samples, the linear SVM is trained for the detection of each human-labeled at-
tribute. We concatenate confidence scores from all these attribute classifiers into a 115-dimensional
vector to represent a video. (2) DDA set: For data-driven attributes, we first apply PCA to reduce
the dimension of histogram descriptors to be 3300 and then learn a dictionary of size 3030. The
features based on data-driven attributes are 3030-dimensional sparse coefficient vectors. (3) Mixed
set: HLA set plus DDA set.

Following the training and testing dataset partitions proposed in [30], we train a linear SVM and
report classification accuracies of different attribute-based representations in Table 1. The selected
attribute subset outperforms the initial attribute set again which demonstrates the effectiveness of
our proposed attribute selection method. Figure 5 shows the results of attribute subsets selected
by different submodular selection methods. Note that this dataset is highly challenging because
the training and test videos of the same action have different backgrounds and actors. You can see
that our method still substantially outperforms the other two submodular methods. This is because
some redundant attributes dominated the selection process and the attributes selected by compar-
ing approaches had very unbalanced discrimination capability for different classes. However, the
attributes selected by our method have strong and similar discrimination capability for each class.
Table 3 presents the classification accuracies of several state-of-the-art approaches on this dataset.
Our method achieves comparable results to the best result 85.9% from [34] which uses complex
spatio-temporal pyramids to embed structure information in features. Note that our method also
outperforms other methods which make use of complicated and advanced feature extraction and
encoding techniques.

5 Conclusion

We exploited human-labeled attributes and data-driven attributes for improving the performance of
action recognition algorithms. We first presented three attribute selection criteria for the selection of
discriminative and compact attributes. Then we formulated the selection procedure as one of opti-
mizing a submodular function based on the entropy rate of a random walk and weighted maximum
coverage function. Our selected attributes not only have strong and similar discrimination capability
for all pairwise classes, but also maximize the sum of largest discrimination capability that each
pairwise classes can obtain from the selected attributes. Experimental results on two challenging
dataset show that the proposed method significantly outperforms many state-of-the art approaches.
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[33] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense trajectories and motion boundary descriptors for

action recognition. International Journal of Computer Vision, 2013.
[34] H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013.
[35] Y. Wang and G. Mori. Max-margin hidden conditional random fields for human action recognition. In

CVPR, 2009.
[36] J. Wu, Y. Zhang, and W. Lin. Towards good practices for action video encoding. In ICCV, 2013.
[37] J. Zhu, B. Wang, X. Yang, W. Zhang, and Z. Tu. Action recognition with actons. In ICCV, 2013.

9


	Introduction
	Related Work
	Submodular Attribute Selection
	Attribute Selection Criteria
	Entropy Rate-based Attribute Selection
	Weighted Maximum Coverage-based Attribute Selection
	Objective Function and Optimization
	Human-labeled Attribute and Data-driven Attribute Extraction

	Experiments
	Olympic Sports Dataset
	UCF101 Dataset

	Conclusion
	Acknowledgements

