[Supplementary Material] Submodular Dictionary Learning for Sparse Coding

Zhuolin Jiang ${ }^{\dagger}$, Guangxiao Zhang ${ }^{\dagger}$, Larry S. Davis ${ }^{\dagger}$
${ }^{\dagger}$ Institute for Advanced Computer Studies, University of Maryland, College Park, MD, 20742
${ }^{\S}$ Global Land Cover Facility, University of Maryland, College Park, MD, 20742
\{zhuolin, gxzhang, lsd\}@umiacs.umd.edu

1. Proofs of the Monotonicity and Submodularity Properties of Entropy Rate $\mathcal{H}(A)$

Recall our definition of $\mathcal{H}(A)$:

$$
\begin{equation*}
\mathcal{H}(A)=-\sum_{i} \mu_{i} \sum_{j} P_{i, j}(A) \log P_{i, j}(A) \tag{1}
\end{equation*}
$$

where μ_{i} is the stationary probability of v_{i} in the stationary distribution $\boldsymbol{\mu}$ and $P_{i, j}(A)$ is the transition probability from v_{i} to v_{j} with respect to A.

1.1. Monotonicity

We prove that $\mathcal{H}(A)$ is monotonically increasing by showing $\mathcal{H}(A \cup\{a\}) \geq \mathcal{H}(A)$, for all $a \in E \backslash A$ and $A \subseteq E$. Without loss of generality, we assume $a=e_{1,2}$. The weights of the self loops for v_{1} and v_{2} are given by:

$$
\begin{align*}
& w_{1,1}=w_{1}-\sum_{j: e_{1, j} \in A \cup\{a\}} w_{1, j}, \tag{2}\\
& w_{2,2}=w_{2}-\sum_{j: e_{2}, j \in A \cup\{a\}} w_{2, j} . \tag{3}
\end{align*}
$$

By the definition of entropy rate in (1), the increase of entropy rate due to the addition of a to A is computed as:

$$
\begin{aligned}
\mathcal{H}(A \cup\{a\}) & -\mathcal{H}(A) \\
= & -\sum_{i} \mu_{i} \sum_{j} P_{i, j}(A \cup\{a\}) \log P_{i, j}(A \cup\{a\}) \\
& +\sum_{i} \mu_{i} \sum_{j} P_{i, j}(A) \log P_{i, j}(A) \\
= & -\sum_{i} \sum_{j} \frac{w_{i}}{w_{\text {all }}} P_{i, j}(A \cup\{a\}) \log P_{i, j}(A \cup\{a\}) \\
& +\sum_{i} \sum_{j} \frac{w_{i}}{w_{\text {all }}} P_{i, j}(A) \log P_{i, j}(A) \\
= & -\sum_{i} \sum_{j} \frac{w_{i}}{w_{\text {all }}} P_{i, j}(A \cup\{a\}) \log \frac{w_{i} P_{i, j}(A \cup\{a\})}{w_{a l l}} \\
& +\sum_{i} \sum_{j} \frac{w_{i}}{w_{a l l}} P_{i, j}(A \cup\{a\}) \log \frac{w_{i}}{w_{a l l}} \\
& +\sum_{i} \sum_{j} \frac{w_{i}}{w_{\text {all }}} P_{i, j}(A) \log \frac{w_{i} P_{i, j}(A)}{w_{\text {all }}} \\
& -\sum_{i} \sum_{j} \frac{w_{i}}{w_{a l l}} P_{i, j}(A) \log \frac{w_{i}}{w_{a l l}} \\
= & -\sum_{i} \sum_{j} \frac{w_{i}}{w_{\text {all }}} P_{i, j}(A \cup\{a\}) \log \frac{w_{i} P_{i, j}(A \cup\{a\})}{w_{a l l}} \\
& +\sum_{i} \sum_{j} \frac{w_{i}}{w_{\text {all }}} P_{i, j}(A) \log \frac{w_{i} P_{i, j}(A)}{w_{\text {all }}} \\
& +\sum_{i} \frac{w_{i}}{w_{a l l}} \log \frac{w_{i}}{w_{a l l}}\left(\sum_{j} P_{i, j}(A \cup\{a\})-\sum_{j} P_{i, j}(A)\right)
\end{aligned}
$$

Since $\sum_{j} P_{i, j}(A \cup\{a\})=\sum_{j} P_{i, j}(A)=1$, the last term in (7) becomes zero. Hence we have

$$
\begin{align*}
& \mathcal{H}(A \cup\{a\})-\mathcal{H}(A) \\
&=-\sum_{i} \sum_{j} \frac{w_{i}}{w_{\text {all }}} P_{i, j}(A \cup\{a\}) \log \frac{w_{i} P_{i, j}(A \cup\{a\})}{w_{\text {all }}} \\
&+\sum_{i} \sum_{j} \frac{w_{i}}{w_{\text {all }}} P_{i, j}(A) \log \frac{w_{i} P_{i, j}(A)}{w_{\text {all }}} \tag{8}
\end{align*}
$$

We notice that in (8), all the terms associated with vertices other than v_{1} and v_{2} are canceled out if $a=e_{1,2}$. Thus,

$$
\begin{align*}
& \mathcal{H}\left(A \cup\left\{e_{1,2}\right\}\right)-\mathcal{H}(A) \\
&=-\left\{\frac{w_{1}}{w_{\text {all }}} P_{1,1}\left(A \cup\left\{e_{1,2}\right\}\right) \log \frac{w_{1} P_{1,1}\left(A \cup\left\{e_{1,2}\right\}\right)}{w_{\text {all }}}\right. \\
&\left.+\frac{w_{1}}{w_{\text {all }}} P_{1,2}\left(A \cup\left\{e_{1,2}\right\}\right) \log \frac{w_{1} P_{1,2}\left(A \cup\left\{e_{1,2}\right\}\right)}{w_{\text {all }}}\right\} \\
&+\left\{\frac{w_{1}}{w_{a l l}} P_{1,1}(A) \log \frac{w_{1} P_{1,1}(A)}{w_{\text {all }}}\right. \\
&\left.+\frac{w_{1}}{w_{\text {all }}} P_{1,2}(A) \log \frac{w_{1} P_{1,2}(A)}{w_{\text {all }}}\right\} \\
&-\left\{\frac{w_{2}}{w_{a l l}} P_{2,1}\left(A \cup\left\{e_{1,2}\right\}\right) \log \frac{w_{2} P_{2,1}\left(A \cup\left\{e_{1,2}\right\}\right)}{w_{a l l}}\right. \\
&\left.+\frac{w_{2}}{w_{a l l}} P_{2,2}\left(A \cup\left\{e_{1,2}\right\}\right) \log \frac{w_{2} P_{2,2}\left(A \cup\left\{e_{1,2}\right\}\right)}{w_{a l l}}\right\} \\
&+\left\{\frac{w_{2}}{w_{a l l}} P_{2,1}(A) \log \frac{w_{2} P_{2,1}(A)}{w_{\text {all }}}\right. \\
&\left.+\frac{w_{2}}{w_{\text {all }}} P_{2,2}(A) \log \frac{w_{2} P_{2,2}(A)}{w_{\text {all }}}\right\} \tag{9}
\end{align*}
$$

Recall the definition of the transition probability:

$$
P_{i, j}(A)= \begin{cases}1-\frac{\sum_{j: e_{i, j} \in A} w_{i, j}}{w_{i}} & \text { if } i=j \tag{10}\\ \frac{w_{i, j}}{w_{i}} & \text { if } i \neq j, e_{i, j} \in A \\ 0 & \text { if } i \neq j, e_{i, j} \neq A\end{cases}
$$

Note that $P_{i, j}(A)=0$ if there is no edge connecting v_{i} and v_{j}. Hence, $P_{1,2}(A)=P_{2,1}(A)=0$. From (2), (3) and the definition of $P_{i, j},(9)$ becomes:

$$
\begin{align*}
& \mathcal{H}\left(A \cup\left\{e_{1,2}\right\}\right)-\mathcal{H}(A) \\
& =\frac{w_{1,1}+w_{1,2}}{w_{\text {all }}} \log \frac{w_{1,1}+w_{1,2}}{w_{\text {all }}}-\frac{w_{1,1}}{w_{\text {all }}} \log \frac{w_{1,1}}{w_{\text {all }}}-\frac{w_{1,2}}{w_{\text {all }}} \log \frac{w_{1,2}}{w_{\text {all }}} \\
& +\frac{w_{2,2}+w_{2,1}}{w_{\text {all }}} \log \frac{w_{2,2}+w_{2,1}}{w_{\text {all }}}-\frac{w_{2,2}}{w_{\text {all }}} \log \frac{w_{2,2}}{w_{\text {all }}}-\frac{w_{2,1}}{w_{\text {all }}} \log \frac{w_{2,1}}{w_{\text {all }}} \\
& =f\left(\frac{w_{1,1}}{w_{\text {all }}}+\frac{w_{1,2}}{w_{\text {all }}}\right)-f\left(\frac{w_{1,1}}{w_{\text {all }}}\right)-f\left(\frac{w_{1,2}}{w_{\text {all }}}\right) \\
& \quad+f\left(\frac{w_{2,2}}{w_{a l l}}+\frac{w_{2,1}}{w_{a l l}}\right)-f\left(\frac{w_{2,2}}{w_{a l l}}\right)-f\left(\frac{w_{2,1}}{w_{a l l}}\right) \tag{12}\\
& \geq 0
\end{align*}
$$

Note in (12), a convex function $f(x)$ in $(0,1)$ is defined as: $f(x)=x \log x$. It's easy to show that the convex function $f(x)$ is superadditive in $(0,1)$, i.e.,

$$
\begin{align*}
f\left(x_{1}\right)+f\left(x_{2}\right) & =f\left(\left(x_{1}+x_{2}\right) \frac{x_{1}}{x_{1}+x_{2}}\right)+f\left(\left(x_{1}+x_{2}\right) \frac{x_{2}}{x_{1}+x_{2}}\right) \\
& \leq \frac{x_{1}}{x_{1}+x_{2}} f\left(x_{1}+x_{2}\right)+\frac{x_{2}}{x_{1}+x_{2}} f\left(x_{1}+x_{2}\right) \\
& =f\left(x_{1}+x_{2}\right) . \tag{14}
\end{align*}
$$

Hence, inequality (13) holds, which completes the proof of the monotonically increasing property of $\mathcal{H}(A)$.

1.2. Submodularity

We prove $\mathcal{H}(A)$ is a submodular function by showing

$$
\begin{align*}
& \mathcal{H}\left(A \cup\left\{a_{1}\right\}\right)-\mathcal{H}(A) \\
& \quad \geq \mathcal{H}\left(A \cup\left\{a_{1}, a_{2}\right\}\right)-\mathcal{H}\left(A \cup\left\{a_{2}\right\}\right), \quad \forall a_{1}, a_{2} \in E \backslash A \tag{15}
\end{align*}
$$

Based on whether a_{1}, a_{2} have a common vertex or not, we compare the value of $\mathcal{H}\left(A \cup\left\{a_{1}\right\}\right)-\mathcal{H}(A)$ with the value of $\mathcal{H}\left(A \cup\left\{a_{1}, a_{2}\right\}\right)-\mathcal{H}\left(A \cup\left\{a_{2}\right\}\right)$ in two cases.

- Case1: a_{1}, a_{2} share no common vertex. Without loss of generality, we assume $a_{1}=e_{1,2}$ and $a_{2}=e_{3,4}$. According to (9), adding a_{1} to A causes the same weight changes as adding a_{1} to $A \cup\left\{a_{2}\right\}$ because the addition of a_{2} has no effect on the loop weights of v_{1} and v_{2}.

$$
\begin{align*}
& \mathcal{H}\left(A \cup\left\{a_{1}, a_{2}\right\}\right)-\mathcal{H}\left(A \cup\left\{a_{2}\right\}\right) \\
= & \frac{w_{1,1}+w_{1,2}}{w_{\text {all }}} \log \frac{w_{1,1}+w_{1,2}}{w_{\text {all }}}-\frac{w_{1,1}}{w_{\text {all }}} \log \frac{w_{1,1}}{w_{a l l}}-\frac{w_{1,2}}{w_{a l l}} \log \frac{w_{1,2}}{w_{\text {all }}} \\
+ & \frac{w_{2,2}+w_{2,1}}{w_{\text {all }}} \log \frac{w_{2,2}+w_{2,1}}{w_{\text {all }}}-\frac{w_{2,2}}{w_{\text {all }}} \log \frac{w_{2,2}}{w_{\text {all }}}-\frac{w_{2,1}}{w_{\text {all }}} \log \frac{w_{2,1}}{w_{\text {all }}} \tag{16}
\end{align*}
$$

Thus, $\left.\mathcal{H}\left(A \cup\left\{a_{1}\right\}\right)-\mathcal{H}(A)\right)=\mathcal{H}\left(A \cup\left\{a_{1}, a_{2}\right\}\right)-\mathcal{H}\left(A \cup\left\{a_{2}\right\}\right)$

- Case2: a_{1}, a_{2} share a common vertex. Without loss of generality, We assume $a_{1}=e_{1,2}$ and $a_{2}=e_{1,3}$. Then the new loop weights for vertex v_{1} and v_{2} are given by:

$$
\begin{align*}
& w_{1,1}^{\prime}=w_{1}-\sum_{j: e_{1, j} \in A \cup\left\{e_{1,2}, e_{1,3}\right\}} w_{1, j}=w_{1,1}-w_{1,3} \tag{17}\\
& w_{2,2}^{\prime}=w_{2}-\sum_{j: e_{2, j} \in A \cup\left\{e_{1,2}, e_{1,3}\right\}} w_{2, j}=w_{2,2} \tag{18}
\end{align*}
$$

where $w_{1,1}$ and $w_{2,2}$ here are given by (2) and (3).

Hence

$$
\left.\begin{array}{rl}
& \left(\mathcal{H}\left(A \cup\left\{a_{1}\right\}\right)-\mathcal{H}(A)\right)-\left(\mathcal{H}\left(A \cup\left\{a_{1}, a_{2}\right\}\right)-\mathcal{H}\left(A \cup\left\{a_{2}\right\}\right)\right. \\
= & \left\{\frac{w_{1,1}+w_{1,2}}{w_{\text {all }}} \log \frac{w_{1,1}+w_{1,2}}{w_{\text {all }}}-\frac{w_{1,1}}{w_{\text {all }}} \log \frac{w_{1,1}}{w_{\text {all }}}-\frac{w_{1,2}}{w_{\text {all }}} \log \frac{w_{1,2}}{w_{\text {all }}}\right. \\
& \left.+\frac{w_{2,2}+w_{2,1}}{w_{\text {all }}} \log \frac{w_{2,2}+w_{2,1}}{w_{\text {all }}}-\frac{w_{2,2}}{w_{\text {all }}} \log \frac{w_{2,2}}{w_{\text {all }}}-\frac{w_{2,1}}{w_{\text {all }}} \log \frac{w_{2,1}}{w_{\text {all }}}\right\} \\
- & \left\{\frac{w_{1,1}^{\prime}+w_{1,2}}{w_{\text {all }}} \log \frac{w_{1,1}^{\prime}+w_{1,2}}{w_{\text {all }}}-\frac{w_{1,1}^{\prime}}{w_{\text {all }}} \log \frac{w_{1,1}^{\prime}}{w_{\text {all }}}-\frac{w_{1,2}}{w_{\text {all }}} \log \frac{w_{1,2}}{w_{\text {all }}}\right. \\
& \left.+\frac{w_{2,2}+w_{2,1}}{w_{\text {all }}} \log \frac{w_{2,2}+w_{2,1}}{w_{\text {all }}}-\frac{w_{2,2}}{w_{\text {all }}} \log \frac{w_{2,2}}{w_{\text {all }}}-\frac{w_{2,1}}{w_{\text {all }}} \log \frac{w_{2,1}}{w_{\text {all }}}\right\} \\
= & \left\{\frac{w_{1,1}+w_{1,2}}{w_{\text {all }}} \log \frac{w_{1,1}+w_{1,2}}{w_{\text {all }}}-\frac{w_{1,1}}{w_{\text {all }}} \log \frac{w_{1,1}}{w_{\text {all }}^{\prime}}\right\} \\
w_{\text {all }}
\end{array}\right\}
$$

From (20) to (21), the relationship between $w_{1,1}$ and $w_{1,1}^{\prime}$ given in (17) is employed. And $g(x)$ in (21) is defined as:

$$
\begin{equation*}
g(x)=(x+\delta) \log (x+\delta)-x \log x \tag{23}
\end{equation*}
$$

Here $\delta=\frac{w_{1,2}}{w_{\text {all }}}$. By taking advantage of the strictly increasing property of $g(x)$, we arrive at (22).

Showing the two cases above, we conclude that $\mathcal{H}(A)$ is a submodular function.

2. Proofs of the Monotonicity and Submodularity Properties of Discriminative Term $\mathcal{Q}(A)$

Recall our definition,

$$
\begin{equation*}
\mathcal{Q}(A)=\frac{1}{C} \sum_{i=1}^{N_{A}} \max _{y} N_{y}^{i}-N_{A} \tag{24}
\end{equation*}
$$

where $\max _{y} N_{y}^{i}$ denotes the maximum element of the count vector $\mathbf{N}^{i}=\left[N_{1}^{i}, \ldots, N_{m}^{i}\right]^{t}$ for cluster S_{i}, N_{A} is the number of connected components.

2.1. Monotonicity

We prove that $\mathcal{Q}(A)$ is monotonically increasing by showing:

$$
\begin{equation*}
\mathcal{Q}(A \cup\{a\}) \geq \mathcal{Q}(A) \tag{25}
\end{equation*}
$$

for all $a \in E \backslash A$ and $A \subseteq E$.
Given any set of selected edges A and its corresponding graph partitioning $\mathcal{S}_{A}=\left\{S_{1}, \ldots, S_{N_{A}}\right\}$, we are only interested in the nontrivial case in which the two vertices of a belong to different clusters. Otherwise the addition of edge a has no impact on the graph partitioning, i.e., $\mathcal{Q}(A \cup\{a\})-\mathcal{Q}(A)=0$.

Without loss of generality, we assume $a=e_{1,2}, v_{1}$ and v_{2} belong to S_{i} and S_{j}, respectively. The new graph partitioning $\mathcal{S}_{A \cup\left\{e_{1,2}\right\}}$ for $A \cup\left\{e_{1,2}\right\}$ is similar to the graph partitioning \mathcal{S}_{A} for A except one thing: clusters S_{i} and S_{j} are merged into one cluster S_{*}. Hence,

$$
\begin{align*}
\mathcal{Q}\left(A \cup\left\{a=e_{1,2}\right\}\right)-\mathcal{Q}(A) & =\left(\frac{1}{C} \sum_{k=1}^{N_{A}-1} \max _{y} N_{y}^{k}-\left(N_{A}-1\right)\right) \\
& -\left(\frac{1}{C} \sum_{k=1}^{N_{A}} \max _{y} N_{y}^{k}-N_{A}\right) \\
& =\frac{1}{C}\left(\max _{y}\left[N_{y}^{i}+N_{y}^{j}\right]-\max _{y} N_{y}^{i}-\max _{y} N_{y}^{j}\right)+1 \\
& =\frac{1}{C}\left(\max _{y} N_{y}^{*}-\max _{y} N_{y}^{i}-\max _{y} N_{y}^{j}\right)+1 \tag{26}
\end{align*}
$$

By definition,

$$
\begin{equation*}
C=\sum_{i} \sum_{y} N_{y}^{i} \geq \max _{y} N_{y}^{i}+\max _{y} N_{y}^{j} \tag{27}
\end{equation*}
$$

and with

$$
\max _{y} N_{y}^{*} \geq 0,
$$

so (26) becomes

$$
\begin{equation*}
\mathcal{Q}(A \cup\{a\})-\mathcal{Q}(A) \geq \frac{1}{C}(0-C)+1=0 \tag{28}
\end{equation*}
$$

This completes the proof of monotonically increasing property of $\mathcal{Q}(A)$.

2.2. Submodularity

Before starting the proof of submodularity, we want to introduce the following two properties of a count vector $\mathbf{N}^{i}=\left[N_{1}^{i}, \ldots, N_{m}^{i}\right]^{t}$.
(1) (Nonnegative) The elements of the count vector are all nonnegative, $\mathbf{N}^{i} \geq 0, i=1, \ldots, N$.
(2) (Subadditivity) Given the new cluster S_{*} by merging clusters S_{i} and S_{j}, the count of the dominating class for cluster S_{*} is less than the sum of the counts of the dominating class for S_{i} and S_{j}, i.e.,

$$
\begin{equation*}
\max _{y}\left[N_{y}^{i}+N_{y}^{j}\right] \leq \max _{y} N_{y}^{i}+\max _{y} N_{y}^{j} \tag{29}
\end{equation*}
$$

with equality holds only when

$$
\arg \max _{y} N_{y}^{i}=\arg \max _{y} N_{y}^{j}
$$

Now we prove that $\mathcal{Q}(A)$ is submodular by showing

$$
\begin{gather*}
\mathcal{Q}\left(A \cup\left\{a_{1}\right\}\right)-\mathcal{Q}(A) \geq \mathcal{Q}\left(A \cup\left\{a_{1}, a_{2}\right\}\right)-\mathcal{Q}\left(A \cup\left\{a_{2}\right\}\right) \\
\forall a_{1}, a_{2} \in E \backslash A \tag{30}
\end{gather*}
$$

Again we consider only the nontrivial case in which edge a_{1} combines two different subsets S_{i} and S_{j}. When $i=j$, $\mathcal{Q}\left(A \cup\left\{a_{1}\right\}\right)-\mathcal{Q}(A)=\mathcal{Q}\left(A \cup\left\{a_{1}, a_{2}\right\}\right)-\mathcal{Q}\left(A \cup\left\{a_{2}\right\}\right)=0$.

Suppose the vertices of a_{2} belong to clusters S_{m}, S_{n}, respectively. Based on the relationship among i, j, m, n $(i \neq j)$, we discuss in the following four cases.

- Case1 (trivial): $m=n$, i.e., the vertices of a_{2} belong to the same cluster. Then adding a_{2} has no effect on the graph:

$$
\begin{align*}
& \mathcal{Q}\left(A \cup\left\{a_{2}\right\}\right)=\mathcal{Q}(A) \\
& \mathcal{Q}\left(A \cup\left\{a_{1}, a_{2}\right\}\right)=\mathcal{Q}\left(A \cup\left\{a_{1}\right\}\right) \tag{31}
\end{align*}
$$

Thus $\mathcal{Q}\left(A \cup\left\{a_{1}\right\}\right)-\mathcal{Q}(A)=\mathcal{Q}\left(A \cup\left\{a_{1}, a_{2}\right\}\right)-\mathcal{Q}\left(A \cup\left\{a_{2}\right\}\right)$.

- Case2 (trivial): $m \neq n,\{m, n\}=\{i, j\}$, i.e., adding a_{2} to the graph has the same effect as adding a_{1}. Thus,

$$
\begin{equation*}
\mathcal{Q}\left(A \cup\left\{a_{2}\right\}\right)=\mathcal{Q}\left(A \cup\left\{a_{1}, a_{2}\right\}\right) \tag{32}
\end{equation*}
$$

Together with monotonically increasing property in (28), we have

$$
\left(\mathcal{Q}\left(A \cup\left\{a_{1}\right\}\right)-\mathcal{Q}(A)\right) \geq \mathcal{Q}\left(A \cup\left\{a_{1}, a_{2}\right\}\right)-\mathcal{Q}\left(A \cup\left\{a_{2}\right\}\right)=0
$$

- Case3: $\{m, n\} \cap\{i, j\}=\emptyset$, i.e., a_{2} combines two clusters S_{m}, S_{n} that are not S_{i}, S_{j}.

$$
\begin{align*}
& \mathcal{Q}\left(A \cup\left\{a_{1}, a_{2}\right\}\right)-\mathcal{Q}\left(A \cup\left\{a_{2}\right\}\right) \\
&= \frac{1}{C}\left\{\max _{y}\left[N_{y}^{i}+N_{y}^{j}\right]+\max _{y}\left[N_{y}^{m}+N_{y}^{n}\right]\right. \\
&\left.-\max _{y} N_{y}^{i}-\max _{y} N_{y}^{j}-\max _{y}\left[N_{y}^{m}+N_{y}^{n}\right]\right\}+1 \tag{34}\\
&= \frac{1}{C}\left\{\max _{y}\left[N_{y}^{i}+N_{y}^{j}\right]-\max _{y} N_{y}^{i}-\max _{y} N_{y}^{j}\right\}+1 \\
&= \mathcal{Q}\left(A \cup\left\{a_{1}\right\}\right)-\mathcal{Q}(A) \tag{35}
\end{align*}
$$

- Case4: $m \in\{i, j\}$, and $n \notin\{i, j\}$. Without loss of generality, we assume $m=i, n=k \neq i, j$, i.e., a_{2} combines two subsets S_{i}, S_{k}.

$$
\begin{align*}
&\left(\mathcal{Q}\left(A \cup\left\{a_{1}\right\}\right)-\mathcal{Q}(A)\right)-\left(\mathcal{Q}\left(A \cup\left\{a_{1}, a_{2}\right\}\right)-\mathcal{Q}\left(A \cup\left\{a_{2}\right\}\right)\right) \\
&= \frac{1}{C}\left\{\max _{y}\left[N_{y}^{i}+N_{y}^{j}\right]-\max _{y} N_{y}^{i}-\max _{y} N_{y}^{j}\right\}+1 \\
&-\frac{1}{C}\left\{\max _{y}\left[N_{y}^{i}+N_{y}^{j}+N_{y}^{k}\right]-\max _{y}\left[N_{y}^{i}+N_{y}^{k}\right]-\max _{y} N_{y}^{j}\right\}-1 \\
&= \frac{1}{C}\left\{\left(\max _{y}\left[N_{y}^{i}+N_{y}^{j}\right]-\max _{y} N_{y}^{i}\right)\right. \\
&\left.-\left(\max _{y}\left[N_{y}^{i}+N_{y}^{k}+N_{y}^{j}\right]-\max _{y}\left[N_{y}^{i}+N_{y}^{k}\right]\right)\right\} \tag{36}
\end{align*}
$$

Based on the dominating class labels of cluster S_{i}, S_{j} and S_{k}, we compare the values of $\left(\max _{y}\left[N_{y}^{i}+N_{y}^{j}\right]-\max _{y} N_{y}^{i}\right) \quad$ and $\left(\max _{y}\left[N_{y}^{i}+N_{y}^{k}+N_{y}^{j}\right]-\max _{y}\left[N_{y}^{i}+N_{y}^{k}\right]\right) \quad$ in the following three situations:
(a) $\arg \max _{y} N_{y}^{i}=\arg \max _{y} N_{y}^{j}$

In this case, S_{i} and S_{j} share the same dominating class. From (29) we have,

$$
\begin{align*}
& \max _{y}\left[N_{y}^{i}+N_{y}^{j}\right]-\max _{y} N_{y}^{i}=\max _{y} N_{y}^{j} \tag{37}\\
& \max _{y}\left[N_{y}^{i}+N_{y}^{k}+N_{y}^{j}\right]-\max _{y}\left[N_{y}^{i}+N_{y}^{k}\right] \leq \max _{y} N_{y}^{j} \tag{38}
\end{align*}
$$

This implies that (36) is ≥ 0.
(b) $\arg \max _{y} N_{y}^{i} \neq \arg \max _{y} N_{y}^{j}, \max _{y} N_{y}^{i} \geq \max _{y} N_{y}^{j}$

In this case S_{i}, S_{j} do not share the same dominating class, and the dominating class label of S_{i} will become the dominating class label for the merged cluster of S_{i}, S_{j}. Therefore, $\max _{y}\left[N_{y}^{i}+N_{y}^{j}\right]-\max _{y} N_{y}^{i}=0$.
Note that the dominating class labels of S_{j} and S_{k} must not be the same. If S_{j}, S_{k} shares the same dominating class label and S_{i} has a different dominating class label, then according to the proposed greedy algorithm, the edge connecting S_{j}, S_{k} (referred to as a_{3}) must already exist in A before considering a_{1}, a_{2}. However, cycle-free constraint requires that a_{1}, a_{2}, a_{3} cannot exist at the same time. By this contradiction, we conclude that S_{j}, S_{k} must have different dominating class labels.
Moreover, taking $\arg \max _{y} N_{y}^{i} \neq \arg \max _{y} N_{y}^{j}$ into consideration, the dominating class, after merging S_{i}, S_{j}, and S_{k}, can only be either $\arg \max _{y} N_{y}^{i}$ or $\arg \max _{y} N_{y}^{k}$, in both case of which we have

$$
\begin{equation*}
\max _{y}\left[N_{y}^{i}+N_{y}^{k}+N_{y}^{j}\right]=\max _{y}\left[N_{y}^{i}+N_{y}^{k}\right] \tag{39}
\end{equation*}
$$

which yields that $\max _{y}\left[N_{y}^{i}+N_{y}^{j}\right]-\max _{y} N_{y}^{i}=$ $\max _{y}\left[N_{y}^{i}+N_{y}^{k}+N_{y}^{j}\right]-\max _{y}\left[N_{y}^{i}+N_{y}^{k}\right]=0$. Thus, (36) is $=0$.
(c) $\arg \max _{y} N_{y}^{i} \neq \arg \max _{y} N_{y}^{j}, \max _{y} N_{y}^{i}<\max _{y} N_{y}^{j}$

In this case, the dominating class label for S_{j} becomes the dominating class label for the merged cluster of S_{i}, S_{j}, i.e.,

$$
\begin{equation*}
\max _{y}\left[N_{y}^{i}+N_{y}^{j}\right]-\max _{y} N_{y}^{i}=\max _{y} N_{y}^{j} \tag{40}
\end{equation*}
$$

Again according to (29),

$$
\begin{equation*}
\max _{y}\left[N_{y}^{i}+N_{y}^{k}+N_{y}^{j}\right]-\max _{y}\left[N_{y}^{i}+N_{y}^{k}\right] \leq \max _{y} N_{y}^{j} \tag{41}
\end{equation*}
$$

which implies (36) is ≥ 0.
From the discussion above we prove that (36) is always ≥ 0, i.e.,

$$
\mathcal{Q}\left(A \cup\left\{a_{1}\right\}\right)-\mathcal{Q}(A) \geq \mathcal{Q}\left(A \cup\left\{a_{1}, a_{2}\right\}\right)-\mathcal{Q}\left(A \cup\left\{a_{2}\right\}\right) .
$$

Summarizing the four cases above, we conclude that $\mathcal{Q}(A)$ is a submodular function.

3. Proof of Matroid

We claim that the cycle free constraint and the connected component constraint induce a matroid $\mathcal{M}=(E, \mathcal{I})$, where E is the edge set, and \mathcal{I} is the collection of subsets $A \subseteq E$ which satisfies (a) A is cycle-free, and (b) the graph partition from A has more than K connected components, i.e., $N_{A} \geq K$.
\mathcal{M} satisfies the following three conditions:

- $\emptyset \in \mathcal{I}$: It's obvious that the empty set \emptyset induces no cycles. The graph associated with \emptyset has $N_{\emptyset}=|V|$ connected components, where the total number of nodes $|V| \geq K$. Therefore $\emptyset \in \mathcal{I}$.
- (Hereditary property): Assume $A \in \mathcal{I}$, and $B \subseteq A$. Denote the the graphs associated with edge set A, B as G_{A} and G_{B} respectively. Under our constraints (i.e., $A \in \mathcal{I}$) G_{A} is cycle free, and $N_{A} \geq K . B$ also satisfies $B \in \mathcal{I}$ because: (a) G_{B} is cycle free, since removing edges from G_{A} cannot create cycles. (b) $N_{B} \geq K$, since removing edges from G_{A} cannot decrease the number of connected components.
- (Exchange property): Suppose $A \in \mathcal{I}, B \in \mathcal{I}$, and $|A|<|B|$. Denote the the graphs associated with A, B as G_{A}, G_{B} respectively. Clearly G_{A} has $N_{A}=$ $|V|-|A|$ connected components, and G_{B} has $N_{B}=$ $|V|-|B|$ connected components, where $N_{A}>N_{B}$. This means G_{B} has fewer connected components than G_{A}, i.e., G_{B} must contain some connected components, S_{i}, whose vertices are in two different connected components in G_{A}. Moreover, since S_{i} is connected, there must exist an edge $x \in B$ such that x connects two vertices in two different components in G_{A}. We can add that edge x without creating a cycle. Since $N_{A} \geq K, N_{B} \geq K$, and $N_{A}>N_{B}$, it must be true that $N_{A} \geq K+1$. Moreover, adding one edge to a graph decreases the number of connected components by at most one. Hence $N_{A \cup\{x\}} \geq K$, which satisfies the connected component constraint. With that being said, for $A, B \in \mathcal{I}$, and $|A|<|B|$, there exists an element $x \in B-A$ such that $A \cup\{x\} \in \mathcal{I}$

With the three conditions satisfied, we conclude that $\mathcal{M}=$ (E, \mathcal{I}) is a matroid.

