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Abstract
We present a novel object recognition framework based

on multiple figure-ground hypotheses with a large object
spatial support, generated by bottom-up processes and mid-
level cues in an unsupervised manner. We exploit the ben-
efit of regression for discriminating segments’ categories
and qualities, where a regressor is trained to each category
using the overlapping observations between each figure-
ground segment hypothesis and the ground-truth of the tar-
get category in an image. Object recognition is achieved by
maximizing a submodular objective function, which maxi-
mizes the similarities between the selected segments (i.e.,
facility locations) and their group elements (i.e., clients),
penalizes the number of selected segments, and more im-
portantly, encourages the consistency of object categories
corresponding to maximum regression values from differ-
ent category-specific regressors for the selected segments.
The proposed framework achieves impressive recognition
results on three benchmark datasets, including PASCAL
VOC 2007, Caltech-101 and ETHZ-shape.

1. Introduction
In recent years, the bag-of-features (BoF) model and its

extension, spatial pyramid matching (SPM) [17], have been
popular for object recognition. When working with densely
sampled pyramid grids and powerful classifiers, BoF and
SPM have achieved impressive performance on several ob-
ject recognition benchmarks including PASCAL VOC 2007
[6] and Caltech-101 [7]. While these densely sampled grids
can retain context information, such as spatial layout, for a
specific object category, irrelevant background information
is also included. To solve this problem, a lot of efforts have
been made to leverage segmentation results for better recog-
nition performance. The benefits of incorporating segmen-
tation for recognition lie in two folds: (1) accurate segmen-
tation can enhance the contrast of object boundaries, so that
features along the boundaries are more shape-informative;
(2) computing features on homogeneous segments improves
the signal-to-noise ratio. However, little progress has been
achieved due to a lack of reliable segmentation techniques.
For example, Nilsback and Zisserman [22] employed seg-
mented images for flower classification. Since only a sin-

gle segment is considered for an image, and clean seg-
mentations can only be guaranteed for images with simple
backgrounds, the performance improvement is not signifi-
cant when comparing with results from non-segmented im-
ages. Unlike approaches that consider only one segment in
an image [22], our approach considers multiple segments
simultaneously via submodularity. Our approach is based
on the recently proposed Constrained Parametric Min Cuts
(CPMC) [3] algorithm, which has demonstrated a signifi-
cant improvement in segmentation. We present a submodu-
lar objective function for efficiently selecting discriminative
segments from the set of figure-ground hypotheses for ob-
ject recognition. We learn a scoring (regression) function to
each object category with the overlapping observations of
each pair of the figure-ground hypothesis and the ground-
truth segment. The benefit of regression is exploited for dis-
criminating segments’ categories and qualities. Our objec-
tive function contains a facility-location term and a discrim-
inative term, where the facility-location term is measured
by the total similarities between the selected segments and
their group elements and the facility costs for the selected
elements, and the discriminative term is measured by the
consistency of categories that obtain the maximum regres-
sion values on selected segments. Our main contributions
are three-fold:

? Object recognition is modeled as a facility location
problem with the constraint of class purity of selected
segments (facility locations), which can be solved by
maximizing a submodular function. We provide a new
perspective of applying submodularity to the object
recognition problem.

? Based on its submodularity property, the objective
function is solved by an efficient greedy algorithm with
the guaranteed performance of at least an (e − 1)/e-
approximation to the optimum.

? Our submodular recognition approach achieves state-
of-the-art performance on three popular object recog-
nition benchmarks.
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2. Related Work

Many recent bottom-up object recognition approaches
attempt to use the spatial layouts of objects for better per-
formance. He et al. [13] constructed a Conditional Ran-
dom Field (CRF) framework on image pixels, where each
pixel is assigned to one of a finite set of labels. Both image
features and image labels are incorporated into the proba-
bilistic framework. Shotton et al. [28] proposed Texton-
boost, which incorporates texture, layout and context infor-
mation for unary classification. By incorporating the unary
classifier into a CRF, the spatial interactions between class
labels of neighboring pixels are captured to guarantee the
smoothness. A major limitation of pixel-level methods is
their weak capability for segmenting nearby objects of the
same category. Gould et al. [11] and Ladicky et al. [16]
addressed such a limitation using rectangular bounding box
detection constraints. Rather than using bounding boxes,
segment-based or superpixel-based approaches are closer to
the ground-truth spatial support. Fulkerson et al. [9] used
superpixels as basic units in the recognition framework. To
this end, the histogram of local features within each super-
pixel is used to construct a classifier, which is regularized
by aggregating histograms of neighboring superpixels. For
segment-level recognition methods, Rabinovich et al. [25]
applied a stability heuristic to select a reduced list of seg-
mentations obtained from normalized cuts [27]. For an im-
age I , each segment in the list is regarded as a stand-alone
image, and labels from all segments are used to vote for
the category of image I . By using a collection of segments
for recognition rather than a single segment, more object
boundary information can be captured. However, they do
not provide a reliable segment selection mechanism for fil-
tering out erroneous segments, and treating the whole col-
lection of segments as a new set of images is too compu-
tationally expensive. Carreira et al. [2] presented an ob-
ject recognition framework based on multiple figure-ground
segmentations generated by CPMC, which is the most sim-
ilar approach to our work. However, our method differs
from their approach by the way of selecting the compact
and discriminative figure-ground hypotheses. Instead of be-
ing ad-hoc as in [2], we apply a constant-factor approxima-
tion based on the submodularity.

Submodularity has recently been applied to many com-
puter vision tasks, including clustering [20], segmentation
[14]. Liu et al. [20] presented a method that uses the en-
tropy rate of a random walk on a graph for compact and
homogeneous clustering. Jiang and Davis [14] solved a
facility location problem [10, 18] for salient region detec-
tion. The saliency of a region is modeled in terms of its ap-
pearance and spatial location, and salient region detection is
achieved by maximizing a submodular objective function.

3. Submodular Object Recognition
Our method solves the object recognition problem

through the selection of a subset of segments so as to best
discover the target object in a query image. Firstly, we ap-
ply the CPMC segmentation [3] on each image to produce
a set of figure-ground hypotheses in an unsupervised man-
ner. Then we construct a graph G based on the generated
figure-ground hypotheses. Since using all segment hypothe-
ses is too computationally expensive and probably produces
misleading predictions. Thus, we aim to discover the dis-
criminative segment subset A of S by iteratively selecting
elements of S into A. Object masks are obtained by over-
laying selected segments for extracting foreground objects.
Finally, a linear classifier is applied for recognizing objects.

3.1. Preliminaries
Submodularity: Let V be a finite set, A ⊆ B ⊆ V and

a ∈ V\B. A set function F : 2V → R is submodular if
F (A ∪ a) − F (A) ≥ F (B ∪ a) − F (B). This property
is referred to as diminishing returns, stating that adding an
element to a smaller set helps more than adding it to a larger
set [21].

3.2. Graph-Construction
For an image I , N figure-ground hypotheses S =

{S1, S2, · · · , SN}1 are generated by CPMC and the
ground-truth segment Gk

I of object category k is provided
for the training data. A subset of figure-ground hypothe-
ses is shown in Figure 1(b)∼(f). We construct a graph
G = (V, E) on the segment hypotheses in image I , where
the vertices v ∈ V are segment hypotheses while the edges
e ∈ E model the pairwise relations between segment hy-
potheses. The weight wij assigned to the edge eij can be
computed through Equation 2.

3.3. Salient Segment Selection
Segments are selected according to criteria: 1) In order

to obtain the discriminative segments for recognition, we
model the segment selection and recognition as a facility
location problem; 2) In order to associate the segments with
object categories, we train a regressor for each category to
predict the overlaps between all the candidate segments and
the ground-truth segment. Assuming a category label with
the highest regression value is assigned to a segment, we
control the purity of segments’ category labels in an image
during segment selection. The two criteria are satisfied by
formulating both the facility location term and the entropy
term in the objective function, and then maximizing it based
on submodularity.

1N is constrained within 100 to limit the computational cost in our
work.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 1: An example of submodular segment selection for the presence/absence classification task. (a): Input image; (b)∼(f):
A small subset of figure-ground segments of different qualities generated by CPMC; (g)∼(i): Aggregated confidence of
selected segments, where (g) is based on the facility location term only, (h) and (i) are based on both the facility location
term and the entropy term; (h) is obtained using both the facility location term and the discriminative term based on the
“car” regressor, and (i) is obtained using both the facility location term and the discriminative term based on the “ship”
regressor. Since discriminative terms are not included in (g), segments’ categories are not considered during the selection.
Thus, selected segments cannot focus on a single object (as in (h) or (i)) if an image contains more than one object categories;
(j)∼(l): Foreground image regions are covered by region masks, which are obtained by thresholding results of (g)∼(i).

3.3.1 Facility-Location Term

We model the problem of selecting the discriminative seg-
ment set among all the segments in an image as the facility
location problem [10, 18]. It can be considered as the set of
locations for opening facilities. Let NA denote the number
of open facilities. With the constraint K, the combinatorial
formulation of the facility location problem can be applied:

max
A
H(A) =

∑
i∈V

max
j∈A

wij −
∑
j∈A

φj

s.t. A ⊆ S ⊆ V, NA ≤ K
(1)

where wij denotes the pairwise relationship between a
group element vi (considered as clients) and a potential
group center vertex vj (considered as facilities), and the cost
φj of opening a facility is fixed to δ. Submodularity of the
overall profitH has been proved in [10, 18].

The first term in (1) encourages the element vi has the
largest value with its assigned group center. It favors the
selected segment vj (group center) to well represent or be
similar to its clients (group elements) so that the final se-
lected set A can be representative. The weight wij of each
edge eij is computed as:

wij = K(vi, vj) +O(vi, vj), (2)

where K(vi, vj) denotes the chi-squared distance
exp(−γχ2(vi, vj)) on histogram features of any pair
of group elements, and O(vi, vj) denotes the ‘union-over-
intersection’ overlap measurement of the same pair of

group elements:

O(vi, vj) =
|vi

⋂
vj |

|vi
⋃
vj |

. (3)

If wij is computed only based on the overlap measurement,
the facility location term will pursue segments that have
highest overlap values with neighbouring segments, so that
segments with large background coverage are preferably se-
lected. Including the chi-squared distance on segments’ his-
togram features can effectively avoid such a problem. The
second term penalizes on extraneous facilities. When the
gain obtained by introducing a new segment to the his-
togram is offset by the cost of opening such a facility, A
will stop growing. Hence this selected A is representative
(i.e., central) and compact (i.e., diversified).

3.3.2 Discriminative Term

We enforce a class-purity constraint to boost the discrimi-
nativity power of the selectedA. The discriminative term is
based on the class purity constraint, which can be obtained
through the learned segment regressor of each category.

These segments are represented by the spatial pyramid
descriptors [29]. The object category contained in image I
is k ∈ {1, 2, · · · ,m}, and we need to learn m scoring func-
tions f1(Si), f2(Si), · · · , fm(Si) for each object category.
Each function is defined on the score set O, which is com-
puted by the overlaps between a segment Si and the ground-
truth segment Gk

I of category k in an image I using the
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Figure 2: Segment selection based on (a) the facility loca-
tion term, and (b) both the facility location term and the en-
tropy term. Dots with different colors denote vertices from
different categories, and a black circle denotes a selected
segment. The number next to an edge is the weight wij of
two vertices defined in Equation 2, and objective function
values of two selection results are shown under the box. By
including the entropy term, we observe that the category
consistency of selected segments is considered as well as
the saliency of each segment. Thus, (b) is preferred.

‘union-over-intersection’ measurement. Specifically, each
Oi is computed as:

Oi(Si, G
k
I ) =

|Si

⋂
Gk

I |
|Si

⋃
Gk

I |
. (4)

Thus, each figure-ground segment Si is associated with its
regression score Oi through fk(Si) = Oi(Si, G

k
I ). Since a

segment usually overlaps with more than one ground-truth
segments when training each fk(Si), it can have different
regression values for a segment when training the scoring
function of different categories. If category k does not ap-
pear in image I , all the segments in image I are considered
as having no overlap with category k. A simple linear Sup-
port Vector Regression is applied to learn each scoring func-
tion fk(S) by regressing on the score set {O} against S for
all images in the training set2. During testing, the scoring
function which results in the highest regression value deter-
mines the category of a query segment Si, i.e., the category
of Si is computed by yi = argmaxk fk(Si).

The entropy is governed by the probability distribution
of category labels that exist in A, and it measures the con-
sistency of the labels of selected segments. Note that the
probability p(j) is not calculated by counting the number
of segments that contribute to each category, but by directly
using the category label of each selected segment. The def-

2 The regressors are first trained only using the ground-truth segments,
after which all candidate segments are fed into the regressors for classi-
fication. The miss-classified segments are then added to the training seg-
ments for re-training the regressors. Considering the high computational
cost caused by huge amounts of segment hypotheses, we adopt the hard
negative example mining strategy to refine the training as in [2].

Algorithm 1 Submodular Object Recognition

1: Input: I , S, fk(·), Ŵ , K and τ .
2: Output: A,M, k∗.
3: Initialization: A ← ∅,Rai ← 0,M← 0.
4: loop

a∗ = argmax
{A∪a}∈V

C(A ∪ {a})− C(A)

5: if C(A ∪ {a}) ≤ C(A) or NA > K then
6: break;
7: end if
8: A ← A∪ {a∗},Ra∗ ← 0
9: M←M+ fk(a

∗) ∗ a∗
10: for ∀i ∈ V \ A do
11: Rai = Rnew

ai
12: end for
13: end loop
14: for each pixel Iij inM do
15: if Iij > τ then
16: M(Iij) = foreground
17: else
18: M(Iij) = background
19: end if
20: end for
21: Integrate the final mask M with the SPM framework, and obtain a

global representation xI for image I .
22: Obtain the category k∗ = argmaxk(l = ŴxI).

inition of the entropy term is given by:

E(A) = −
∑
j∈A

p(j) log p(j), (5)

with

p(j) =
argmaxk fk(Sj)∑

j∈A argmaxk fk(Sj)
, (6)

where the numerator denotes the object category of seg-
ment j, and the denominator sums all values on numera-
tors to guarantee the convolution of the probability distri-
bution equals to one. To each candidate segment, its cat-
egory is assigned by the scoring function that achieves the
highest regression value. By maximizing E(A), we encour-
age the selected segment set A to possess homogeneous
category labels, which reduce negative effects from erro-
neous regressors. The maximum value of E(A) is reached
when p(i) = p(j),∀i, j ∈ A, i.e., all segments in A come
from the same object category. Note that different ways
for including the entropy term into the objective function
are used for the multi-category classification task (i.e., the
Caltech-101 dataset) and the presence/absence classifica-
tion3 task (i.e., the PASCAL 2007 and the ETHZ-shape
dataset dataset). For multi-category classification, regres-
sors of all categories are used during the segment selection
process, and a segment’s category is allocated by the re-
gressor that possesses the highest regression value. For the
presence/absence classification task, only a single regressor

3Following [29, 23, 4, 5, 12, 1], the presence/absence classification is
to predict presence/absence of an example of that class in the test image.
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of the query category is considered, and a segment’s cate-
gory is allocated as ‘1’ if the regression value is above 0.5,
and ‘2’ otherwise. When the query category changes, differ-
ent segments are selected with respect to a different regres-
sor. Thus, our method can well handle the presence/absence
classification problem, where images contain more than one
objects. The proof of monotonicity and submodularity of
E(A) is given in the Appendix section.

Figure 1(j)∼(l) show the segment selection results for an
example of the presence/absence classification task. With-
out the entropy term as in Figure 1(j), the facility location
term only favors representative segments. When the entropy
term is included, category-specific segments are selected.
When detecting object category ‘car’ segments with high
regression scores of the “car” regressor are prefered (shown
in Figure 1(k)). Figure 2 illustrates how the facility location
term and the entropy term contribute to a selection.

3.4. Optimization
We can combine the facility-location term and the dis-

criminative term into a unified objective function:

max
A
C(A) =max

A
H(A) + λE(A)

=max
A

∑
i∈V

max
j∈A

cij −
∑
j∈A

φj

−λ
∑
j∈A

p(j) log p(j)

(7)

Direct maximization of C(A) is an NP-hard problem
[10]. The submodularity of (7) is preserved by taking non-
negative linear combinations of the two submodular terms
H(A) and E(A). Utilizing this property, (7) can be effi-
ciently solved via a greedy algorithm [10] [21]. The seg-
ment set A is initialized with ∅, and a segment a∗ ∈ A \ S
that leads to the largest marginal gain Ra∗ at each itera-
tion is iteratively added to A. The algorithm updates the
marginal gain of the selected segment with 0 and the re-
maining facility assignments in V by Rnew

a∗
i

at every itera-
tion. A stops absorbing new segments when the desired
number of segments is reached or the gain decreases. The
constraint on the number of open facilities induces a sim-
ple uniform matriod U = (S, I), where I is the collec-
tion of subsets A ⊆ S, which satisfies that the number of
open facilities NA is less than K. Maximization of a sub-
modular function with a uniform matroid constraint yields a
(1−1/e)-approximation [21]. Hence our approach provides
a performance-guarantee solution.

The optimization process can be accelerated by using the
submodularity property of the objective function. Instead of
recomputing the gain for adding every segment a ∈ V \ A,
which requires |V| − |A| evaluations for the gain C(A), we
use the lazy evaluation form from [19]. The pseudocode
of submodular object recognition framework is given in Al-

gorithm 1 , where the submodular optimization process is
given between line 3 ∼ 20.

3.5. Segmentation Mask Construction
The final maskM is obtained by overlaying all segments

inA while taking account of the confidence score fk(aj) of
each segment aj ∈ A. An adaptive threshold τ = 0.6 ×
NA is applied toM to filter out pixels with low confidence
scores.

3.6. Classification
We integrate the final maskM with the SPM framework

[29] for object representation. For each image, M is ap-
plied to mask and zero pad the original image. By discard-
ing regions that fall outside the maskM, the image repre-
sentation xI is computed as in the SPM framework. Then
we use the multivariate ridge regression model to train a
linear classifier Ŵ :

Ŵ = argmax
W

‖H −WX‖22 + ϕ‖W‖22, (8)

where X is the training data, H is the class label matrix
of X , and W denotes classifier parameters. This yields the
solution Ŵ = HXT (XXT + ϕZ)−1, with Z being an
identity matrix. For a test image I , we first compute its
representation xI and then estimate its class label vector l =
ŴxI , where l ∈ Rm. Its label is the index i corresponding
to the largest element in l.

4. Experiments
We evaluate our submodular object recognition approach

on three popular benchmarks, including Caltech-101 [7],
PASCAL VOC 2007 [6] and ETHZ-shape [8]. For all three
datasets, we compute the dense SIFT features on each im-
age. Regressors are trained based the ground-truth segmen-
tations provided with the training data. For all the experi-
ments, we evaluate our approach by either using the facility
location term (“FL”) only or using both the facility location
term and the entropy term (“FL”+“EN”).

4.1. PASCAL VOC 2007
We extensively evaluate the effectiveness of our ap-

proach on the PASCAL VOC 2007 dataset, as the ground-
truth of the testing data is released. The PASCAL VOC
2007 dataset contains 9, 963 images from 20 visual object
categories, and the dataset is evenly split to “trainval” and
“test” parts. Following typical settings in [29, 23, 4, 5, 12],
we conduct experiments on the “trainval” and “test” splits.
In our algorithm, we train the regressors according to the
overlap observations between each figure-ground hypothe-
sis and the ground-truth segmentation of an object category.
Since the ground-truth segmentations are only available for
those images provided in the segmentations challenge, we
train the regressors only based on images with provided
ground-truth segmentation in the “trainval” split. We show
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Table 1: Average precisions (APS) of each object category achieved by the baseline method and our proposed methods on
the PASCAL VOC 2007 dataset.

Methods plane bicyclebird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Avg
Yang [29] 74.8 65.2 50.7 70.9 28.7 68.8 78.5 61.7 54.3 48.6 51.8 44.1 76.6 66.9 83.5 30.8 44.6 53.4 78.2 53.5 59.3

Florent [23] 75.7 64.8 52.8 70.6 30.0 64.1 77.5 55.5 55.6 41.8 56.3 41.7 76.3 64.4 82.7 28.3 39.7 56.6 79.7 51.5 58.3
Harzallah [12] 77.2 69.3 56.2 66.6 45.5 68.1 83.4 53.6 58.3 51.1 62.2 45.2 78.4 69.7 86.1 52.4 54.4 54.3 75.8 62.1 63.5

Qiang [4] 76.7 74.7 53.8 72.1 40.4 71.7 83.6 66.5 52.5 57.5 62.8 51.1 81.4 71.5 86.5 36.4 55.3 60.6 80.6 57.8 64.7
Dong [5] 82.2 83.0 58.4 76.1 56.4 77.5 88.8 69.1 62.2 61.8 64.2 51.3 85.4 80.2 91.1 48.1 61.7 67.7 86.3 70.9 71.1

FL 81.2 82.2 56.7 73.5 56.2 76.5 88.5 67.8 58.0 60.1 61.7 48.1 85.1 77.8 89.3 45.5 60.6 64.4 84.3 69.2 69.3
FL+EN 83.7 82.5 63.3 77.3 58.0 80.2 89.4 68.8 63.1 63.7 67.4 53.5 86.4 82.7 90.5 48.4 62.0 67.9 87.2 71.5 72.4

Figure 3: Effects of parameter selection of λ and δ on the
recognition performance on the Caltech-101 dataset when
using 30 training examples per category. The horizontal
axis denotes different values of δ, while lines with differ-
ent colors denote different λ values.

the results achieved by both “FL” and “FL+EN” in Table 1.
We calculate the average precisions (APs) for each object
category using both approaches, and compare with state-of-
the-art approaches [29, 23, 4, 5, 12]. As can be observed,
the “FL+EN” approach outperforms all other approaches.

4.2. Caltech-101 Dataset
The Caltech-101 dataset [7] contains 9, 144 images from

102 classes (101 object classes and a ‘background’ class).
The ground-truth segmentations are provided in this dataset.
We train a codebook with 2048 bases, and choose 4×4, 2×2
and 1× 1 sub-regions for SPM. Following the common ex-
perimental protocol, randomly selected 5, 10, 15, 20, 25,
30 samples per category are used for training, and remain-
ing samples are for testing. We repeat the experiments 10
times and the final results are reported as the average of
each run. We compare our results with state-of-the-art ap-
proaches [29, 15, 26, 2] in Table 2. We also show the results
of “BS” and “GT”, which denote results produced by using
only the best segments4 and ground-truth segments, respec-
tively. The high performance of “BS” and “GT” proves our
motivation that recognition performance can be improved
by segmentation.

4For an image I , the best segment is a segment that has the largest
overlap with the ground-truth segment GI .

Figure 4: Effects of parameter selection of δ on the the
aggregated confidence of selected segments M. (a): In-
put image; (b): Ground truth segment; (c)∼(f): The ag-
gregated confidence of selected segments when the penalty
cost δ = 3, 2.5, 2, 0.5, respectively. The color denotes dif-
ferent confidence values (red: high, blue: low). In case of
too few segments are selected as in (c), the aggregated con-
fidence does not have accurate coverage of the object. The
coverage of the aggregated confidence is improved in (d)
when more segments are selected. (e) has the most accurate
coverage. A can “over-select” segments if we reduce the
penalty term. In (f), the aggregated confidence focuses on a
small central region of the object as too many segments are
selected.

Figure 5: Examples of aggregated confidence maps of se-
lected segments on images from Caltech-101 dataset. (a):
Input images; (b): Ground truth object segmentations; (c):
Aggregated confidence of selected segments using “FL”
method only; (d): Aggregated confidence of selected seg-
ments using “FL”+“EN” method; (e): Foreground objects
based on masks generated by the results of (d) through
adaptive thresholds.

We randomly select 30 images as training data, and eval-
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Figure 6: ROC curves of our approaches (“FL” and “FL” +“ EN”) and state-of-the-art approaches on the all five categories of
the ETHZ Shape Classes dataset.

Table 2: Recognition accuracies using spatial pyramid fea-
tures on the Caltech-101 dataset. “BS” and “GT” denote re-
sults produced by using only the best ranked segments and
ground-truth segments, respectively.

Method 5 10 15 20 25 30

Yang [29] 49.84% 57.26% 62.75% 68.78% 71.12% 73.72%

Jiang [15] 54.00% 63.10% 67.70% 70.50% 72.30% 73.60%

Shaban [26] 54.01% 63.86% 68.70% 71.58% 73.73% 75.07%

Carreira [2] 60.90% − 74.70% − − 81.90%

GT 68.71% 77.67% 81.33% 84.49% 86.73% 88.34%

BS 63.95% 72.03% 77.66% 79.69% 82.24% 83.27%

FL 59.81% 68.45% 73.90% 76.98% 78.96% 80.28%

FL+EN 63.29% 71.47% 76.43% 78.26% 81.03% 83.18%

uate our approach when different values of the entropy term
weight λ and the penalty cost δ are selected. As shown in
Figure 3, the best performance is achieved when λ = 1.5
and δ = 2. If λ is set to 0, the performance degrades since
segments’ purity is not considered. On the other hand, if
λ is too large, pursuing segments’ purity while considering
less on their visual saliency is harmful to the performance.
The performance is more sensitive to the penalty cost δ. If δ
is large, the cost of opening a new facility can easily exceed
the profit that the system can benefit from such a facility.
Consequently, only one or a few facilities can be selected.
In general, there does not exist a single correct segmen-
tation for an image, so that the performance is weakened
when recognition is performed on too few segments within
an image (as shown in Figure 4(c) and Figure 4(d)). A small
δ can lead to a large collection of segments being selected.
Thus, the intersection of selected segments is concentrated
on a small image region (as shown in Figure 4(f)), and much
object information is discarded. As a result, recognition
performance significantly degrades. Figure 5 demonstrates
results of aggregated confidence maps of selected segments
and resulting foreground objects, and Figure 7 shows exam-
ple images from classes with high classication accuracy of
the Caltech-101 dataset.

Figure 7: Example images from classes with high classica-
tion accuracy of the Caltech-101 dataset.

Table 3: Average precisions (APS) of each object category
on the ETHZ shape classes dataset.

Methods Apple Bottles Gira Mugs Swans Avg

Yang [29] 83.79 83.13 92.77 89.16 85.75 86.92
Jiang [15] 84.11 88.71 94.74 89.64 88.91 89.22

FL 86.40 89.50 95.04 89.72 89.16 89.96
FL+EN 93.18 91.71 97.43 93.61 92.96 93.78

4.3. ETHZ Shape Classes
The ETHZ Shape Classes dataset [24] contains 255 im-

ages from 5 shape categories, including “Applelogo”, “Bot-
tles”, “Giraffes”, “Mugs”, “Swans”, and object ground-
truth outlines are provided for all images. Following the
PASCAL classification criterion, for each of the 5 cate-
gories, we predict presence/absence of an example of that
class in the test image. The dataset is evenly split into
training and testing sets and performance is averaged over
5 random splits. Performance comparisons between our
approaches (“FL” and “FL” +“EN”) and approaches in
[29, 15] are given in Table 3. It can be observed that the
proposed “FL”+“EN” significantly outperforms other meth-
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ods. The ROC curves of our approaches and approaches in
[29, 15] for the all five categories are shown in Figure 6.

5. Conclusions
We have proposed a greedy object recognition approach

based on submodularity. Discriminative segments are se-
lected by maximizing a submodular function, which can be
viewed as a facility location problem with the constraint of
class purity of selected segments. Segments’ categories are
estimated by regressors trained within each category. The
objective function is optimized by a highly efficient greedy
algorithm. Experimental results on three public benchmarks
indicate that our method outperforms state-of-the-art recog-
nition techniques.

We plan to apply our approach to object detection tasks.
Since our approach can efficiently select potential segments
so as to discover the target object, it is superior to traditional
sliding window based detection approaches.
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Appendix
In this section, we give the proof of monotonicity and

submodularity of the entropy term in Equation (5).

A. Monotonicity Proof of E(A)
We prove E(A) is monotonically increasing by showing

E(A∪a) ≥ E(A), for all a ∈ V\A andA ⊆ V , ρa(A) ≥ 0,
where ρa(·) is the marginal gain when adding element a.

E(A ∪ a)− E(A)

= −
∑

j∈A∪a
p(j) log p(j) +

∑
j∈A

p(j) log p(j)

= −p(a)logp(a) ≥ 0

(9)

B. Submodularity Proof of E(A)
We prove E(A) is a submodular function using the di-

minishing returns definition by showing that for any A ⊆
B ⊂ V , and a ∈ V \ B, ρa(A) ≥ ρa(B).

E(B ∪ a)− E(B)

= −
∑

j∈B,a∈V
p(j, a) log p(j, a) +

∑
j∈B

p(j) log p(j)

= −
∑

j∈B,a∈V
p(j, a) log p(j, a) +

∑
j∈B,a∈V

p(j, a) log p(j)

=
∑

j∈B,a∈V
p(j, a) log

p(j)

p(j, a)

= E(a|B) ≤ E(a|A) = E(A ∪ a)− E(A)
(10)
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