Submodular Reranking with Multiple Feature Modalities for Image Retrieval [Supplementary Material]

Fan Yang[†], Zhuolin Jiang[§] and Larry S. Davis[†]

[†]University of Maryland College Park, MD, USA [§]Noah's Ark Lab, Huawei Technologies {fyang,lsd}@umiacs.umd.edu, zhuolin.jiang@huawei.com

1 Proofs of PROPOSITIONS

1.1 Proof of PROPOSITION 1

Monotonicity

Proof. We have

$$F_m(\mathcal{S}) = H(\mathcal{V}_m \backslash \mathcal{S}) - H(\mathcal{V}_m \backslash \mathcal{S} | \mathcal{S}) = I(\mathcal{V}_m \backslash \mathcal{S}; \mathcal{S})$$

for graph \mathcal{G}_m , where $I(\mathcal{V}_m \setminus \mathcal{S}; \mathcal{S})$ is the mutual information between $\mathcal{V}_m \setminus \mathcal{S}$ and \mathcal{S} . As proved in [1], $I(\mathcal{V}_m \setminus \mathcal{S}; \mathcal{S})$ is monotonic when $|\mathcal{V}_m|$ is larger than $2|\mathcal{S}|$, which is the case in our framework. This completes the proof of the monotonicity property of $F_m(\mathcal{S})$.

Submodularity

Proof. We prove the submodularity by showing: for any $S_1 \subset S_2$ and a given example $a \in \mathcal{V}_m \setminus S_2$, we have

$$F_m(\mathcal{S}_1 \cup \{a\}) - F_m(\mathcal{S}_1) \ge F_m(\mathcal{S}_2 \cup \{a\}) - F_m(\mathcal{S}_2)$$

We have

$$(F_m(S_1 \cup \{a\}) - F_m(S_1)) - (F_m(S_2 \cup \{a\}) - F_m(S_2)) = (H(a|S_1) - H(a|\mathcal{V}_m \setminus \{S_1 \cup a\})) - (H(a|S_2) - H(a|\mathcal{V}_m \setminus \{S_2 \cup a\})) = (H(a|S_1) - H(a|S_2)) + (H(a|\mathcal{V}_m \setminus \{S_2 \cup a\}) - H(a|\mathcal{V}_m \setminus \{S_1 \cup a\})) = H_1 + H_2$$

Since conditioning always reduces entropy, $H(a|S_1) \ge H(a|S_2)$, so that $H_1 \ge 0$. $\mathcal{V}_m \setminus \{S_2 \cup a\} \subset \mathcal{V}_m \setminus \{S_1 \cup a\}$, so that we have $H(a|\mathcal{V}_m \setminus \{S_2 \cup a\}) \ge H(a|\mathcal{V}_m \setminus \{S_1 \cup a\})$, leading to $H_2 \ge 0$. Therefore, $H_1 + H_2 \ge 0$, which completes the proof of the submodularity property of $F_m(S)$. 2 Fan Yang, Zhuolin Jiang and Larry S. Davis

1.2 Proof of PROPOSITION 2

Monotonicity

Proof. We prove that T(S) is monotonically increasing by showing $T(S \cup \{a\}) \ge T(S)$, for all $a \in \mathcal{V} \setminus S$ and $S \subseteq \mathcal{V}$. Let |S| denote the cardinality of S. Since items in S are ordered, we assume the rank of a in $S \cup \{a\}$ as $r_a = |S| + 1$ without loss of generality. We have

$$T(\mathcal{S} \cup \{a\}) - T(\mathcal{S})$$

=(1 - q) $\sum_{s=1}^{|\mathcal{S}|+1} q^s \cdot \frac{1}{s} \sum_{v_i, v_j \in \mathcal{S} \cup \{a\}, r_{v_i} < r_{v_j} = s} \mathcal{C}(v_i, v_j)$
- (1 - q) $\sum_{s=1}^{|\mathcal{S}|} q^s \cdot \frac{1}{s} \sum_{v_i, v_j \in \mathcal{S}, r_{v_i} < r_{v_j} = s} \mathcal{C}(v_i, v_j)$
=(1 - q) $\cdot q^{|\mathcal{S}|+1} \cdot \frac{1}{|\mathcal{S}|+1} \sum_{v_i \in \mathcal{S}, r_{v_i} < r_a = |\mathcal{S}|+1} \mathcal{C}(v_i, a)$

Since $C(v_i, a) \ge 0$, 1 - q > 0 and $q^{|S|+1} > 0$, we can easily have $T(S \cup \{a\}) - T(S) \ge 0$ and $T(\emptyset) = 0$. This completes the proof of monotonically increasing property of T(S).

Submodularity

Proof. We prove the submodularity by showing: for any $S_1 \subset S_2$ and a given example $a \in \mathcal{V} \setminus S_2$, we have

$$T(\mathcal{S}_1 \cup \{a\}) - T(\mathcal{S}_1) \ge T(\mathcal{S}_2 \cup \{a\}) - T(\mathcal{S}_2)$$

From the derivation for monotonicity, we have

$$T(S_1 \cup \{a\}) - T(S_1) = (1 - q) \cdot q^{|S_1| + 1} \cdot \frac{1}{|S_1| + 1} \sum_{v_i \in S_1, r_{v_i} < r_a = |S_1| + 1} C(v_i, a)$$

and

$$T(S_2 \cup \{a\}) - T(S_2) = (1-q) \cdot q^{|S_2|+1} \cdot \frac{1}{|S_2|+1} \sum_{v_i \in S_2, r_{v_i} < r_a = |S_2|+1} C(v_i, a)$$

For notational simplicity, we let $n_1 = |\mathcal{S}_1| + 1$ and $n_2 = |\mathcal{S}_2| + 1$. Define

$$k_{1} = \frac{1}{n_{1}} \sum_{v_{i} \in \mathcal{S}_{1}, r_{v_{i}} < r_{a} = n_{1}} \mathcal{C}(v_{i}, a)$$
$$k_{2} = \frac{1}{n_{2}} \sum_{v_{i} \in \mathcal{S}_{2}, r_{v_{i}} < r_{a} = n_{2}} \mathcal{C}(v_{i}, a)$$

as the average relative ranking measure between a and all items in S_1 and S_2 , respectively. Then k_1 and k_2 can be represented as

$$k_2 = \frac{1}{n_2} (n_1 k_1 + \sum_{v_i \in \mathcal{S}_2 \setminus \mathcal{S}_1, r_{v_i} < r_a = n_2} \mathcal{C}(v_i, a))$$

Suppose $|\mathcal{S}_2| = |\mathcal{S}_1| + n$, according to Eq. 6 in the paper, $\mathcal{C}(v_i, a)$ can be considered as a random variable $\phi \in [0, 1]$, so that we have $k_2 = \frac{1}{n_2}(n_1k_1 + \sum_n \phi)$, where the upper bound of $\sum_n \phi$ is nk_1 . Hence

$$(T(S_1 \cup \{a\}) - T(S_1)) - (T(S_2 \cup \{a\}) - T(S_2)) = (1 - q) \cdot q^{|S_1|} (k_1 - q^n k_2)$$

Since (1-q) > 0 and $q^{|S_1|} > 0$, we only need to prove $k_1 - q^n k_2 \ge 0$. Let $k_1 - q^n k_2 = k_1 - q^n \frac{n_1 k_1 + \sum_n \phi}{n_2}$, which reaches its minimum when $\sum_n \phi$ reaches its upper bound. In this case, we have

$$k_1 - q^n k_2 = k_1 - q^n \frac{n_1 k_1 + n k_1}{n_2} = k_1 (1 - q^n) \ge 0$$

This completes the proof of submodularity property of T(S).

References

 Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions. Mathematical Programming 14 (1978) 265– 294