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Abstract

Discriminative appearance features are effective for recognizing actions in a fixed
view, but generalize poorly to changes in viewpoint. We present a method for view-
invariant action recognition based on sparse representations using a transferable dictio-
nary pair. A transferable dictionary pair consists of two dictionaries that correspond to
the source and target views respectively. The two dictionaries are learned simultaneously
from pairs of videos taken at different views and aim to encourage each video in the
pair to have the same sparse representation. Thus, the transferable dictionary pair links
features between the two views that are useful for action recognition. Both unsupervised
and supervised algorithms are presented for learning transferable dictionary pairs. Using
the sparse representation as features, a classifier built in the source view can be directly
transferred to the target view. We extend our approach to transferring an action model
learned from multiple source views to one target view. We demonstrate the effectiveness
of our approach on the multi-view IXMAS data set. Our results compare favorably to the
the state of the art.

1 Introduction

Human action recognition is receiving significant attention in computer vision due to its rich
real-world applications, which include multimedia retrieval, human computer interaction,
video surveillance. Since many human actions produce strong spatio-temporal patterns of
appearance or motion, most state-of-the-art approaches develop discriminative visual rep-
resentations for recognizing actions. Some leading representations include spatio-temporal
volumes [2, 30], spatio-temporal interest points [11, 15], shape features [3, 13, 16, 18],
geometric models of human body parts [19], and optical flow patterns [5, 13, 14]. These
approaches are effective for recognizing actions with limited view variations but tend to
perform poorly when applied on datasets with large view variations, such as actions in the
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Figure 1: Independent dictionary learning versus Transferable dictionary learning. (a) Based
on the BoVW feature representation, the source and target dictionaries are learned individually using
videos taken from two different views of the same action. (b) Based on the same BoVW feature
representation, we simultaneously learn the source and target dictionaries by forcing the shared videos
taken from two views to have the same sparse representations.

IXMAS multi-view dataset [26] (See Fig. 2). This is because an action usually looks very
different from different viewpoints. Thus, action models learned using labeled samples in
one (source) view are less discriminative for recognizing actions in a different (target) view.

In this paper, we propose a novel approach for cross-view action recognition by transfer-
ring sparse feature representations of videos from the source to target view. The first step is
to construct a separate codebook for each view, where the first view is the source domain and
the second is the target domain. Each codebook is constructed by the k-means clustering al-
gorithm. Each video is modeled as a Bag of Visual Words (BOVW) using the corresponding
codebook from the same view. Although each pair of videos records the same action from
two views, the feature representations of an action in the two views are different because
each view has its own codebook. The next step is to learn a dictionary pair {Dy, D, }, with
Dy corresponding to the source view and D, the target view. The dictionaries are designed
to have sparse codes that are the same for each pair of videos that records the same action
across the two views. In this way, videos across different views of the same action are en-
couraged to have similar sparse representations. This procedure enables the transfer of the
sparse feature representations of videos in the source view to the corresponding videos in the
target view. There is no reason to assume that two separate dictionaries that are learned in-
dependently for each view will have a view-invariant feature representation. The difference
between learning a dictionary pair individually and our transferable dictionary pair learning
can be seen in Figure 1.

Furthermore, we consider two types of actions: shared actions, that are observed in both
source and target views, and orphan actions that are observed only in the source view. Or-
phan action labels are available only in the source view. For the shared actions, we consider
two scenarios: (1) shared actions in both views are not labeled; (2) shared actions in both
views are labeled. We refer them as the unsupervised and supervised settings respectively
and propose corresponding unsupervised and supervised approaches for learning the trans-
ferable dictionary pair. Note that under both settings only videos of shared actions across
different views are used for learning the dictionary pair, which means that the dictionary pair
is not affected by videos of orphan actions. In order to handle the situation where videos of
shared actions across multiple source views are available, we extend our approach to learn a
set of view-dependent dictionaries where different BoVW model-based feature representa-
tions are converted to a dictionary set-based feature representations.
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1.1 Our Contributions

We make the following contributions.
e Our approach directly exploits the video-level correspondence and bridges the gap of
sparse representations of pairs of videos taken from different views of the same action.

e Our approach is unsupervised and does not require the category labels of the corre-
sponding videos across two views. When the category labels are available, a discrimi-
native dictionary pair can be learned to further improve the performance.

e We extend our approach to learn a set of dictionaries for transferring action models
from multiple source views to one target view.

e Both unsupervised and supervised approaches are considered.

The paper is organized as follow. We briefly discuss related work in Section 2 and review
sparse coding and dictionary learning methods in Section 3. Then we present our unsuper-
vised and supervised approaches in Sections 4 and 5 respectively. Extensions to transfer
action models from multiple source views to one target view are given in section 6. Experi-
mental results are discussed in Section 7 and the paper is concluded in Section 8.

2 Related Work

Recently two transfer learning approaches have been proposed to address cross-view action
recognition problems. Farhadi et al. [6] proposed a method that generates split-based fea-
tures for frames in the source view using Maximum Margin Clustering and transfers the split
values to the corresponding frames in the target view. From the split values of frames, a
classifier is trained to predict split-based features in the target view. However, this approach
requires feature-to-feature correspondence at the frame-level and the mapping from the orig-
inal features to split-based features is obtained from a trained predictor. Liu et al. [17] used a
bipartite graph to model the relationship between two codebooks generated by k-means clus-
tering of videos acquired at each view. Then a bipartite partition is used to co-cluster the two
view-dependent codebooks into shared visual-word clusters. A shared codebook made up of
these shared clusters is used to encode all videos in both views. However, it only exploits the
codebook-to-codebook correspondence at video-level, which can not guarantee that pairs of
videos taken at the two views have similar feature representations based on the shard code-
book. In addition, this method uses a fusion method to combine the prediction outputs of
different transferred models. This requires the clustering of test videos in the target view.

Many other view-invariant methods that concentrate on the 2D image data acquired by
multiple cameras have also been proposed. Rao et al [22] presented a view-invariant repre-
sentation of human action to capture the dramatic changes in the speed and direction of the
trajectory using spatio-temporal curvature of 2D trajectory. Parameswaran et al. [20, 21] pro-
posed to model actions it terms of view-invariant canonical body poses and trajectories in 2D
invariance space which leads to represent and recognize human actions from a general view-
point. The approach in [9, 10] developed a very simple and stable action descriptor called
Self-Similarity Matrix that captures the structure of temporal similarities and dissimilarities
with an action sequence. The method in [7] proposed a latent model for cross-view action
recognition which depends on good parameter initialization. The technique in [25] proposed
a view-invariant matching method based on epipolar geometry between actor silhouettes
without tracking and explicit point correspondences. Recently Li et al. [12] generated a se-
quence of linear transformations of action descriptors as smooth virtual path to connect the
source view and target views.
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In addition, 3D approaches for cross-view action recognition have also been proposed.
One proposed method [26] models actions using three dimensional occupancy grids built
from multiple view points, using an exemplar-based HMM. Yen et al. [29] employed a 4D
action feature model for recognizing actions from arbitrary views. This model encodes shape
and motion of actors observed from multiple views and requires the reconstruction of 3D
visual hulls of actors at each time instant. Both approaches lead to computationally intense
algorithms because finding the best match between a 3D model and a 2D observation requires
searching over a large model parameter space. Weinland et al. [27] developed a hierarchical
classification method based on 3D Histogram of Oriented Gradients (HOG) to represent a
test sequence. Robustness to occlusions and viewpoint changes are achieved by combining
training data from all viewpoints to train hierarchical classifiers.

3 Sparse Coding and Dictionary Learning

In this section, we give a brief review of sparse coding and the K-SVD algorithm [1] for
learning an over-complete dictionary. Let Y = [y1,...,yn] € R"*N be a set of N input signals
in a n-dimensional feature space. Assuming a dictionary D of size K is given, the sparse
representations X =[xy, ...,xy] € RE*N for ¥ are obtained by solving:

X:argn}(inHY—DXH% st Vi, |xllo <, (1)

where ||Y — DX||3 denotes the reconstruction error and ||x;|[o < s is the sparsity constraint.
The sparsity constraint requires that each signal has s or fewer items in its decomposition.
The orthogonal matching pursuit (OMP) algorithm [24] can then be used to solve Eq. 1.

The performance of sparse representation depends critically on D [8, 28]. The K-SVD [1]
is well known for efficiently learning an over-complete dictionary from a set of training
signals. It solves the following optimization problem:

(D,X) = argrgi)?HY—DXH% st Vi, | |xillo < s )

where D = [dy, ...,dg] € R"K is the learned dictionary, and X are the sparse representations
of Y. Later, we will formulate the problem of learning a transferable dictionary pair as an
optimization problem which can be efficiently solved using the K-SVD algorithm.

4 Unsupervised Transferable Dictionary Pair Learning

In the unsupervised setting, our goal is to transfer orphan action models from the source
view to the target view. In other words, we want to learn an action model for orphan actions
in the source view and test it in the target view. We achieve this goal by making use of
correspondence between two sets of videos of the shared unlabeled actions taken from two
different views. Our solution is to find discriminative representations that are approximately
the same for different views of the same action. For this purpose, we construct a transferable
dictionary pair denoted by {D;, D, }, such that each pair of videos of the same action taken
from source and target views have the same sparse representations. The key to the success of
our method is that actions have sparse view-invariant representations, while each view has a
different codebook.
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Let Y,,Y; € R™M denote the feature representations of M videos of shared actions in the
source and target views. The objective function for learning a transferrable dictionary pair is
given by:

argDmDinX||Ys—DsX||%—|—HYl—D,X||§ st Vi ||xilfo < s. (3)
$71 >

Since we have the same number of shared action videos in source and target views, this
objective function can be rewritten as

argrl‘gli)?HYfDXH% st Vi, |xillo < s 4)

Y, D . . . ..
where Y = [ § } and D = * |, As mentioned in Section 3, the transferable dictionary

Y; D,
pair {Dy, D, } can be efficiently learned using the K-SVD algorithm.

Given the learned source dictionary D;, we obtain sparse feature representations of the
training videos in the source view using the OMP algorithm mentioned in Section 3. Simi-
larly, for test videos of orphan actions in the target view, we obtain the corresponding sparse
feature representations using D;. Videos of orphan actions in both views will have similar
sparse representations when encoded using the corresponding view-dependent dictionary.
This is because Dy and D; are learned by forcing two sets of videos of shared unlabeled ac-
tions in two views to have the same sparse representations. Thus, the action model learned
in the source view can be directly applied to classify unlabeled test videos in the target view.

S Supervised Transferable Dictionary Pair Learning

When action categories of shared action videos are available in both views, we leverage this
category information to learn a discriminative transferrable dictionary pair. Here the key idea
is to partition the total dictionary items into disjoint subsets and each subset is responsible
for representing videos of one action. Specifically, we represent videos of the same action by
the same subset of dictionary items. For videos of different action classes, we represent them
using disjoint subsets of dictionary items. This results in an explicit correspondence between
dictionary items and their labels. The rationale behind this idea is that action videos from the
same class tend to have same features and each action video could be well represented by
other videos from the same class. On the contrary, videos from different classes tend to have
different features and thus should be well represented by disjoint subsets of other videos.

In order to achieve the above goal, we incorporate a label consistent regularization term
introduced in [8] to the objective function in Eq. 3. Now the objective function for dictionary
pair construction is given by:

arg min _[[Y;—DX|[F+|% = DiX[F+A[[Q-AX|; st Villllo<s, (5
§ L

D A,X|
where A controls the tradeoff between the reconstruction error and label consistent regu-
larization. The elements of matrix Q = [q1,...,qn] € RE*N consist of the ideal "discrimi-
native" sparse codes of shared action videos in both views. The vector ¢g; = [qil, ...,q{(] =
[0...1,1,..0] € RK is a discriminative sparse code corresponding to one shared action video
pair {yx’i,y,’,-} and the non-zeros values of g; occur at those indices where the shared ac-
tion video pair {ys;,y,;} and the dictionary item dj share the same label. The matrix A is
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a linear transformation matrix which transforms the original sparse code X to the be most
discriminative in sparse feature space RX.
Similarly, the objective function in Eq. 5 can be rewritten as follows.

arglgi)?HY—DXH% st Vi ||xillo < s (6)
Y, D,

whereY = | ¥, | and D= | D; |.The K-SVD algorithm can be used to learn the trans-
0 A

ferable dictionary pair {D;,D;}. The learned transferable dictionary pair not only bridges
the gap between sparse representations of action videos of the same class across two views,
but also makes the sparse representations of action videos from different classes more dis-
criminative.

6 Multi-view action recognition via multiple transferable
dictionaries

In this section, we show how to extend our approach to transfer the action model from mul-
tiple source views to one target view. Suppose there are p source views V* and one target
view V', the problem is how to make use of the transferred knowledge from each source view
to recognize novel actions in the target view. We propose to learn a set of view-dependent
dictionaries by forcing videos of shared actions in all views to have the same representa-
tions when encoded using the corresponding view-dependent dictionary. The corresponding
objective function is given by:

P
arg  min Y ||V —DoX|F+|[Y; =D X[ st Vi,[lxillo < s. (7)
{Ds,i Y DX (2

Similarly, we rewrite the objective function as follows.

argrll)li)?HY—DXH% s.t. Vi, |xillo <, (8)
YA‘,] Ds,l

whereY=| 7 | and D= " |. It can be seen that our formulation not only aligns
Ysp Dy p
Y; Dy

the correspondence between each source view and the target view but also aligns the corre-
spondence among source views. Then we obtain the sparse representation of each video in
each view using the corresponding view-dependent dictionary. Consequently, all videos in
all views are aligned into a common view-invariant sparse feature space. This means that
we do not need to differentiate the training videos from each source view in this common
view-invariant sparse feature space. Any action model learned using all the training videos
in all source views can be directly used to classify unlabeled test videos in the target view.

7 Experiments

We evaluated our approach using the IXMAS multi-view action data set [26], which contains
four side views and one top view of 11 actions performed 3 times by 10 actors. See Figure 2
for example frames from the IXMAS dataset.
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Figure 2: Exemplar frames from IXMAS multi-view dataset. Each row shows one action viewed
across different angles.

We follow the protocol in [17] for extracting the spatio-temporal interest point feature
introduced in [4]. We extract up to 200 cuboids from each action video. Each cuboid is
represented by a 100-dimensional descriptor learned using PCA. Then we use these interest
point descriptors to learn five codebooks of 1000 codewords by k-means clustering. One
codebook is learned for each of the five views. Each action video is modeled as a BoVW
using the corresponding view-dependent codebook. Thus, each action video is represented
by a 1000-dimensional histogram. For global features, we learn five codebooks of 500 code-
words by clustering shape flow descriptors introduced in [23] for each view. Similarly, each
action video in each view is encoded using the corresponding view-dependent codebook.
Finally, for each action video, we concatenate local and global feature descriptors to form a
1500-dimensional descriptor.

For an accurate comparison to [6] and [17], we follow the leave-one-action-class-out
strategy for choosing the orphan action which means that each time we only consider one
action class for testing in the target view. This action class is not used to construct a transfer-
able dictionary pair in both unsupervised and supervised settings. We report the classification
accuracy by averaging over all possible combinations for selecting orphan actions.

7.1 Transfer models across pairwise views

In this section, we evaluate our approach for transferring action models across pairwise
views. We learn two dictionary pairs which consists of one independent dictionary pair
and one transferable dictionary pair. Both dictionary pairs include two dictionaries corre-
sponding to the source and target views. For the independent dictionary pair, we learn the
dictionaries separately for each view without any knowledge transfer while the transferable
dictionary pair is learned using Eq. 3 or Eq. 5 according to different settings. For each dictio-
nary pair, we represent training videos in the source view and test videos in the target view
using the corresponding source and target dictionaries respectively. Thus, we obtain two
different sparse feature representations by using different dictionary pairs. Based on each
sparse feature representation, a k-NN classifier is used to recognize unlabeled test videos.
Table 1 shows the recognition accuracy for all 20 combinations of the source and target
views. We observe that the k-NN without transfer performs very poorly and the recognition
accuracy for most combinations is less than 50%. On the other hand, both of our approaches
achieve very high accuracy, which demonstrates the transferability of the simultaneously
learned dictionary pair.

The recognition results of different unsupervised and supervised approaches are shown
in Table 2 and 3 respectively. Compared to the other two unsupervised approaches in [6]
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%

Target View

Co

Cl1

C2

C3

C4

Cco

(264, 96.7, 98.8)

(24.6,97.9, 99.1)

(20.3,97.6, 99.4)

(279, 84.9, 92.7)

Cl

(31.2,97.3,98.8)

(23.0,96.4,99.7)

(23.0, 89.7,92.7)

(20.3, 81.2,90.6)

Source View | C2

(233,92.1, 99.4)

(209, 89.7, 96.4)

(13.0, 94.9, 97.3)

(179, 89.1, 95.5)

C3

(9.7,97.0, 98.2)

(24.9,94.2,97.6)

(23.0,96.7, 99.7)

(16.7, 83.9, 90.9)

C4

(512, 83.0, 85.8)

(382,706, 81.5)

(412, 89.7,93.3)

(533,837, 83.9)

Ave.

(28.9,92.4,95.5)

(27.6, 87.8,93.6)

(28.0,95.1, 98.0)

(274,912, 93.3)

(207, 84.8,92.4)

Table 1: The cross-view recognition results with and without knowledge transfer. Each row
corresponds to a source (training) view and each column a target (test) view. {Ci};—o 1 .4 denotes five
different camera views. The recognition numbers in the bracket are the average recognition accuracies

of k-NN without transfer, our unsupervised and supervised approaches respectively.

% Target View
Cco Cl C2 C3 C4
Co (72,71.6,79.9,96.7) | (61,69.4,76.8,97.9) | (62,70.3,76.8,97.6) | (30,44.8,74.8, 84.9)
Cl | (69,77.3,81.2,97.3) (64,73.9,75.8,96.4) | (68,67.3,78.0,89.7) | (41,43.9,70.4,81.2)

Source View

(62, 66.1,79.6,92.1)

(67,70.6,76.6, 89.7)

(67,63.6,79.8,94.9)

(43,53.6,72.8, 89.1)

(63,69.4,73.0,97.0)

(72,70.0, 74.1, 94.2)

(51,51.8,74.0,96.7)

(44,44.2,66.9, 83.9)

(51, 39.1, 82.0, 83.0)

(55, 38.8, 68.3, 70.6)

(51, 51.8,74.0, 89.7)

(53,34.2,71.1, 83.7)

(61, 63.0,79.0,92.4)

(67,64.3,74.7,87.8)

(61,64.5,75.2,95.1)

(63,58.9,76.4,91.2)

(40, 46.6,71.2, 84.8)

able 2: The cross-view recognition results of different unsupervised approaches. Each row
corresponds to a source (training) view and each column a target (test) view. {Ci};—o ... 4 denotes five
different camera views. The recognition numbers in the bracket are the average recognition accuracies
of [6], [10], [17], and our unsupervised approach respectively.

% Target View
CO Cl1 C2 C3 C4

Cco (79, 98.8) (79, 99.1) (68, 99.4) (76, 92.7)
C1 (72, 98.8) (74, 99.7) (70, 92.7) (66, 90.6)

Source View C2 (71, 99.4) (82, 96.4) (76, 97.3) (72, 95.5)
C3 (75, 98.2) (75, 97.6) (73, 99.7) (76, 90.0)
C4 | (80,85.8) | (73,.81.5) | (73,93.3) | (79, 83.9)
Ave. | (74,95.5) | (77.93.6) | (76,98.0) | (73,93.3) | (72,92.4)

Table 3: The cross-view recognition results of different supervised approaches. Each row cor-

responds to a source (training) view and each column a target (test) view. {Ci};—g 1, 4 denotes five
different camera views. The recognition numbers in the bracket are the average recognition accuracies
of [7] and our supervised approach respectively.

and [17] that also transfer action models across views, our unsupervised approach yields
much better performance in all cases. Furthermore, for half of all the combinations, our
unsupervised method achieves more than 90% recognition accuracy. Comparing our super-
vised approach with [7], which also requires supervision, our method still performs much
better and achieves nearly perfect performance for a majority of combinations.

It is interesting to note that for the case where the Camera4 is the source or the target
view, the recognition accuracy is a little lower than other combinations of piecewise views.
One reason for this is that Camera 4 was set above the actors and all the different actions look
the same from the top view. In addition, the higher recognition accuracy obtained by our su-
pervised approach compared to the unsupervised approach demonstrates that the transferable
dictionary pair learned using labeled shared activities across views is more discriminative.

7.2 Transfer models from multiple source views to one target view

In this section, we show the effectiveness of our approach in transferring action models
from multiple source views to one target view. We learn a dictionary set {Dy1,...,Dy »,D; }
according to Eq. 7 in the unsupervised learning. For the supervised setting, we add the
label consistent regularization term to Eq. 7 to learn a more discriminative dictionary set.
Afterwards, each training action video in each view is encoded using the corresponding
view-dependent dictionary respectively. Since the dictionary set is learned by aligning the
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Percentage Camera0 | Cameral | Camera2 | Camera3 | Camera4 | Average
Our unsupervised 98.5 99.1 99.1 100 90.3 97.4
Our supervised 99.4 98.8 99.4 99.7 93.6 98.2
LWE [17] 86.6 81.1 80.1 83.6 82.8 82.8
Junejo et al. [10] 74.8 74.5 74.8 70.6 61.2 71.2
Liuetal. [15] 76.7 73.3 72.0 73.0 N/A 73.8
Weinland et al. [27] 86.7 89.9 86.4 87.6 66.4 83.4

Table 4: Multi-view action recognition results . Each column corresponds to one target view. The
first two rows show the recognition accuracies of our unsupervised and supervised approaches.

1 m cameraO ™ cameral = camera2 ™ camera3 ™= camerad4 Our unsupervised approach
0.9
0.8
0.7
0.6
0.5

check cross scratch sit get turn walk wave punch kick pick
= camera0 = cameral = camera2 = camera3 = camerad4 Our supervised approach

1
0.9
0.8
0.7
0.6
0.5

check cross scratch sit get turn walk wave punch kick pick

Figure 3: The multi-view recognition results on each action category. The top bar figure corre-
sponds to our unsupervised approach and the bottom bar figure corresponds to our supervised approach.
Five bars in a group indicates the recognition accuracy for one action category and each bar in the group
corresponds to one target (test) view.

correspondence of shared action videos across all views, the sparse representation of all
action videos in all views are in the same sparse feature space. And we simply use a k-NN
classifier to classify the unlabeled test videos in the target view.

Table 4 shows the average accuracy for transferring action models from multiple source
views to one target view. It can be seen that both unsupervised and supervised approaches
presented here obtain the best performance and achieve nearly perfect performance for all
cases except the case where Camera 4 (top view) is the target view. Furthermore, both
[17] and our unsupervised approach only use training videos of four source views to train a
classifier while [10, 15, 27] trained their classifiers using training videos from all five views.

In addition, it is interesting to look at the recognition accuracy of each action category
from each target view in Figure 3. We observe that except for the Camera 4 (top view) as
the target view, both of our approaches achieves more than 90% accuracy for each action
category in each target view. This again shows that it is harder to transfer action models
across views that involves the top view.

8 Conclusion

In this paper, we introduced a dictionary learning-based approach to recognize an unknown
action from an unseen (target) view using training data taken from other (source) views.
We propose to learn a transferable dictionary pair which includes a source dictionary and a
target dictionary using shared action videos across the source and target views. By forcing
the shared action videos in both views to have the same sparse representations, the dictionary
pair is made to have the transferability property. This is because action videos of the same
class in different views encoded using the corresponding view-dependent dictionary tend to
have the same sparse representations. Using this transferable dictionary pair, we can directly
transfer action models across views. In addition, when the labels of shared action videos are
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available in both views, we extend our approach to learn a more discriminative transferable
dictionary pair by forcing shared action videos of different classes inside each view to have
different sparse representations. Furthermore, we naturally extend our approach to transfer
action models from multiple source views to one target view without using model fusion
methods. We have extensively tested our approach on the publicly available IXMAS multi-
view dataset. The resulting performance clearly confirms the effectiveness of our approach
for cross-view action recognition.
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